Properties

Label 2-4160-1.1-c1-0-52
Degree $2$
Conductor $4160$
Sign $-1$
Analytic cond. $33.2177$
Root an. cond. $5.76348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s − 4·7-s + 9-s + 2·11-s + 13-s − 2·15-s + 2·17-s − 6·19-s + 8·21-s + 6·23-s + 25-s + 4·27-s − 2·29-s − 6·31-s − 4·33-s − 4·35-s + 2·37-s − 2·39-s + 10·41-s + 10·43-s + 45-s − 12·47-s + 9·49-s − 4·51-s − 2·53-s + 2·55-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.516·15-s + 0.485·17-s − 1.37·19-s + 1.74·21-s + 1.25·23-s + 1/5·25-s + 0.769·27-s − 0.371·29-s − 1.07·31-s − 0.696·33-s − 0.676·35-s + 0.328·37-s − 0.320·39-s + 1.56·41-s + 1.52·43-s + 0.149·45-s − 1.75·47-s + 9/7·49-s − 0.560·51-s − 0.274·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4160\)    =    \(2^{6} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(33.2177\)
Root analytic conductor: \(5.76348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.998195685405704786191863974410, −6.88790761852876821998572696853, −6.50582599523088593057290597481, −5.93751448677235778004080810798, −5.31195556198861378291649819015, −4.29032007651445818827415518174, −3.43852159309911188911327625151, −2.50577777165118673567864114027, −1.11941535085904868961137140184, 0, 1.11941535085904868961137140184, 2.50577777165118673567864114027, 3.43852159309911188911327625151, 4.29032007651445818827415518174, 5.31195556198861378291649819015, 5.93751448677235778004080810798, 6.50582599523088593057290597481, 6.88790761852876821998572696853, 7.998195685405704786191863974410

Graph of the $Z$-function along the critical line