L(s) = 1 | − 2-s − 2·3-s − 4-s − 4·5-s + 2·6-s − 3·7-s + 3·8-s + 9-s + 4·10-s − 4·11-s + 2·12-s − 5·13-s + 3·14-s + 8·15-s − 16-s − 3·17-s − 18-s − 4·19-s + 4·20-s + 6·21-s + 4·22-s + 8·23-s − 6·24-s + 11·25-s + 5·26-s + 4·27-s + 3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s − 1/2·4-s − 1.78·5-s + 0.816·6-s − 1.13·7-s + 1.06·8-s + 1/3·9-s + 1.26·10-s − 1.20·11-s + 0.577·12-s − 1.38·13-s + 0.801·14-s + 2.06·15-s − 1/4·16-s − 0.727·17-s − 0.235·18-s − 0.917·19-s + 0.894·20-s + 1.30·21-s + 0.852·22-s + 1.66·23-s − 1.22·24-s + 11/5·25-s + 0.980·26-s + 0.769·27-s + 0.566·28-s + ⋯ |
Λ(s)=(=(433s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(433s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 433 | 1−T |
good | 2 | 1+T+pT2 |
| 3 | 1+2T+pT2 |
| 5 | 1+4T+pT2 |
| 7 | 1+3T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1+5T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+9T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1+9T+pT2 |
| 43 | 1+7T+pT2 |
| 47 | 1−9T+pT2 |
| 53 | 1+5T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1+7T+pT2 |
| 71 | 1+9T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1−9T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65914823427479669007317594203, −9.307903179910026089353913014640, −8.432605385178941132054991521013, −7.41239186062132188132348593599, −6.81362847351019760597193961457, −5.16976335052993119549954852181, −4.53754586413642223166086062553, −3.13653467946233451337264151475, 0, 0,
3.13653467946233451337264151475, 4.53754586413642223166086062553, 5.16976335052993119549954852181, 6.81362847351019760597193961457, 7.41239186062132188132348593599, 8.432605385178941132054991521013, 9.307903179910026089353913014640, 10.65914823427479669007317594203