Properties

Label 2-433-1.1-c1-0-33
Degree $2$
Conductor $433$
Sign $1$
Analytic cond. $3.45752$
Root an. cond. $1.85944$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s − 4·5-s + 2·6-s − 3·7-s + 3·8-s + 9-s + 4·10-s − 4·11-s + 2·12-s − 5·13-s + 3·14-s + 8·15-s − 16-s − 3·17-s − 18-s − 4·19-s + 4·20-s + 6·21-s + 4·22-s + 8·23-s − 6·24-s + 11·25-s + 5·26-s + 4·27-s + 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s − 1.78·5-s + 0.816·6-s − 1.13·7-s + 1.06·8-s + 1/3·9-s + 1.26·10-s − 1.20·11-s + 0.577·12-s − 1.38·13-s + 0.801·14-s + 2.06·15-s − 1/4·16-s − 0.727·17-s − 0.235·18-s − 0.917·19-s + 0.894·20-s + 1.30·21-s + 0.852·22-s + 1.66·23-s − 1.22·24-s + 11/5·25-s + 0.980·26-s + 0.769·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 433 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 433 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(433\)
Sign: $1$
Analytic conductor: \(3.45752\)
Root analytic conductor: \(1.85944\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 433,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad433 \( 1 - T \)
good2 \( 1 + T + p T^{2} \)
3 \( 1 + 2 T + p T^{2} \)
5 \( 1 + 4 T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 5 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65914823427479669007317594203, −9.307903179910026089353913014640, −8.432605385178941132054991521013, −7.41239186062132188132348593599, −6.81362847351019760597193961457, −5.16976335052993119549954852181, −4.53754586413642223166086062553, −3.13653467946233451337264151475, 0, 0, 3.13653467946233451337264151475, 4.53754586413642223166086062553, 5.16976335052993119549954852181, 6.81362847351019760597193961457, 7.41239186062132188132348593599, 8.432605385178941132054991521013, 9.307903179910026089353913014640, 10.65914823427479669007317594203

Graph of the $Z$-function along the critical line