L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s + 3·11-s + 12-s − 13-s + 14-s + 15-s + 16-s + 5·17-s − 18-s + 19-s + 20-s − 21-s − 3·22-s + 3·23-s − 24-s − 4·25-s + 26-s + 27-s − 28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.904·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.21·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s − 0.218·21-s − 0.639·22-s + 0.625·23-s − 0.204·24-s − 4/5·25-s + 0.196·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.427084885\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.427084885\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 - 3 T + p T^{2} \) |
| 17 | \( 1 - 5 T + p T^{2} \) |
| 19 | \( 1 - T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 - 5 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + 5 T + p T^{2} \) |
| 41 | \( 1 + 8 T + p T^{2} \) |
| 43 | \( 1 + T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 13 T + p T^{2} \) |
| 67 | \( 1 + 10 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 15 T + p T^{2} \) |
| 79 | \( 1 - 6 T + p T^{2} \) |
| 83 | \( 1 + 2 T + p T^{2} \) |
| 89 | \( 1 + 2 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37222580911320193962631624501, −9.879081886329772384809709299329, −9.088442719362802588356057027476, −8.303660229476383551053190981619, −7.28059517613580383361960117880, −6.48543346802406488839429568576, −5.35771852379483352074220354059, −3.81468304746563960569702394948, −2.71288319524339209617944628177, −1.30613462142742324235177250713,
1.30613462142742324235177250713, 2.71288319524339209617944628177, 3.81468304746563960569702394948, 5.35771852379483352074220354059, 6.48543346802406488839429568576, 7.28059517613580383361960117880, 8.303660229476383551053190981619, 9.088442719362802588356057027476, 9.879081886329772384809709299329, 10.37222580911320193962631624501