Properties

Label 2-5547-1.1-c1-0-262
Degree $2$
Conductor $5547$
Sign $-1$
Analytic cond. $44.2930$
Root an. cond. $6.65529$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 2·5-s + 2·7-s + 9-s − 5·11-s − 2·12-s + 3·13-s + 2·15-s + 4·16-s − 3·17-s − 2·19-s − 4·20-s + 2·21-s − 23-s − 25-s + 27-s − 4·28-s − 5·31-s − 5·33-s + 4·35-s − 2·36-s − 8·37-s + 3·39-s − 7·41-s + 10·44-s + 2·45-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 0.894·5-s + 0.755·7-s + 1/3·9-s − 1.50·11-s − 0.577·12-s + 0.832·13-s + 0.516·15-s + 16-s − 0.727·17-s − 0.458·19-s − 0.894·20-s + 0.436·21-s − 0.208·23-s − 1/5·25-s + 0.192·27-s − 0.755·28-s − 0.898·31-s − 0.870·33-s + 0.676·35-s − 1/3·36-s − 1.31·37-s + 0.480·39-s − 1.09·41-s + 1.50·44-s + 0.298·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5547 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5547 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5547\)    =    \(3 \cdot 43^{2}\)
Sign: $-1$
Analytic conductor: \(44.2930\)
Root analytic conductor: \(6.65529\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5547,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
43 \( 1 \)
good2 \( 1 + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 15 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 12 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 11 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.059592290888346365420813482711, −7.24650891152641622311326767857, −6.25092156557851862967201238599, −5.38353481546129357418197442687, −5.02270173768800302474938329281, −4.10857267207543274426489530992, −3.29981924554613740035491051437, −2.22633750088123189512744210341, −1.54997112185557038907193599436, 0, 1.54997112185557038907193599436, 2.22633750088123189512744210341, 3.29981924554613740035491051437, 4.10857267207543274426489530992, 5.02270173768800302474938329281, 5.38353481546129357418197442687, 6.25092156557851862967201238599, 7.24650891152641622311326767857, 8.059592290888346365420813482711

Graph of the $Z$-function along the critical line