Properties

Label 2-56784-1.1-c1-0-4
Degree $2$
Conductor $56784$
Sign $1$
Analytic cond. $453.422$
Root an. cond. $21.2937$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 2·11-s + 15-s + 19-s + 21-s − 3·23-s − 4·25-s − 27-s − 5·29-s + 9·31-s + 2·33-s + 35-s − 2·41-s + 43-s − 45-s + 3·47-s + 49-s − 9·53-s + 2·55-s − 57-s − 2·61-s − 63-s + 10·67-s + 3·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.258·15-s + 0.229·19-s + 0.218·21-s − 0.625·23-s − 4/5·25-s − 0.192·27-s − 0.928·29-s + 1.61·31-s + 0.348·33-s + 0.169·35-s − 0.312·41-s + 0.152·43-s − 0.149·45-s + 0.437·47-s + 1/7·49-s − 1.23·53-s + 0.269·55-s − 0.132·57-s − 0.256·61-s − 0.125·63-s + 1.22·67-s + 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56784\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(453.422\)
Root analytic conductor: \(21.2937\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 56784,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5752774235\)
\(L(\frac12)\) \(\approx\) \(0.5752774235\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 15 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 17 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40034432631267, −13.78857174163669, −13.19845246391241, −12.97957403431803, −12.18382641206145, −11.79254305480230, −11.52216636659775, −10.67656922839172, −10.41190531724601, −9.774621961627515, −9.361470288079016, −8.614794854576367, −7.981185113154679, −7.634493184417992, −7.029173697280145, −6.361415992278516, −5.894247094948070, −5.375222349809926, −4.636092009923224, −4.182686756512651, −3.479155125008865, −2.845682596435437, −2.081527457379423, −1.248979155476029, −0.2835377398057606, 0.2835377398057606, 1.248979155476029, 2.081527457379423, 2.845682596435437, 3.479155125008865, 4.182686756512651, 4.636092009923224, 5.375222349809926, 5.894247094948070, 6.361415992278516, 7.029173697280145, 7.634493184417992, 7.981185113154679, 8.614794854576367, 9.361470288079016, 9.774621961627515, 10.41190531724601, 10.67656922839172, 11.52216636659775, 11.79254305480230, 12.18382641206145, 12.97957403431803, 13.19845246391241, 13.78857174163669, 14.40034432631267

Graph of the $Z$-function along the critical line