L(s) = 1 | − 2-s + 4-s + 5-s − 8-s − 10-s − 4·11-s − 13-s + 16-s − 6·17-s − 4·19-s + 20-s + 4·22-s − 8·23-s + 25-s + 26-s − 6·29-s + 8·31-s − 32-s + 6·34-s − 10·37-s + 4·38-s − 40-s − 6·41-s + 4·43-s − 4·44-s + 8·46-s − 50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s − 1.20·11-s − 0.277·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s + 0.223·20-s + 0.852·22-s − 1.66·23-s + 1/5·25-s + 0.196·26-s − 1.11·29-s + 1.43·31-s − 0.176·32-s + 1.02·34-s − 1.64·37-s + 0.648·38-s − 0.158·40-s − 0.937·41-s + 0.609·43-s − 0.603·44-s + 1.17·46-s − 0.141·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 11 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 16 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.95377388957285, −14.46086765055763, −13.68130642428567, −13.37545121706582, −12.94719180071655, −12.22760448838772, −11.78755757714881, −11.23526552264366, −10.52801967234310, −10.20686404895099, −10.00601470500917, −9.018565917445404, −8.722144747919592, −8.262100224017778, −7.594082919174439, −7.086437814585767, −6.532038551745766, −5.878790513299371, −5.499820797475872, −4.619279134046817, −4.194422637115469, −3.280903111827143, −2.415686157332019, −2.198485275584797, −1.437082926842500, 0, 0,
1.437082926842500, 2.198485275584797, 2.415686157332019, 3.280903111827143, 4.194422637115469, 4.619279134046817, 5.499820797475872, 5.878790513299371, 6.532038551745766, 7.086437814585767, 7.594082919174439, 8.262100224017778, 8.722144747919592, 9.018565917445404, 10.00601470500917, 10.20686404895099, 10.52801967234310, 11.23526552264366, 11.78755757714881, 12.22760448838772, 12.94719180071655, 13.37545121706582, 13.68130642428567, 14.46086765055763, 14.95377388957285