Properties

Label 2-58080-1.1-c1-0-48
Degree $2$
Conductor $58080$
Sign $-1$
Analytic cond. $463.771$
Root an. cond. $21.5353$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 4·7-s + 9-s + 15-s + 4·19-s − 4·21-s + 4·23-s + 25-s − 27-s + 8·31-s − 4·35-s − 10·37-s − 12·41-s − 4·43-s − 45-s + 12·47-s + 9·49-s − 10·53-s − 4·57-s − 4·61-s + 4·63-s − 4·67-s − 4·69-s − 4·73-s − 75-s − 4·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.258·15-s + 0.917·19-s − 0.872·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.43·31-s − 0.676·35-s − 1.64·37-s − 1.87·41-s − 0.609·43-s − 0.149·45-s + 1.75·47-s + 9/7·49-s − 1.37·53-s − 0.529·57-s − 0.512·61-s + 0.503·63-s − 0.488·67-s − 0.481·69-s − 0.468·73-s − 0.115·75-s − 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58080\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(463.771\)
Root analytic conductor: \(21.5353\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 58080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.63756169908698, −14.04651693122094, −13.66838664338907, −13.16603774186624, −12.21227099207087, −12.05276587938287, −11.61107467494957, −11.13148946645507, −10.52286843925318, −10.27368784054102, −9.445442748079598, −8.750310299231034, −8.443911044095484, −7.685472210735571, −7.441003054136236, −6.731750581351971, −6.189847804592194, −5.307427504680725, −4.975846319371971, −4.661052265392278, −3.792363582572239, −3.218447879169084, −2.358247658634207, −1.483582967126618, −1.081470622132554, 0, 1.081470622132554, 1.483582967126618, 2.358247658634207, 3.218447879169084, 3.792363582572239, 4.661052265392278, 4.975846319371971, 5.307427504680725, 6.189847804592194, 6.731750581351971, 7.441003054136236, 7.685472210735571, 8.443911044095484, 8.750310299231034, 9.445442748079598, 10.27368784054102, 10.52286843925318, 11.13148946645507, 11.61107467494957, 12.05276587938287, 12.21227099207087, 13.16603774186624, 13.66838664338907, 14.04651693122094, 14.63756169908698

Graph of the $Z$-function along the critical line