Properties

Label 2-58080-1.1-c1-0-49
Degree $2$
Conductor $58080$
Sign $-1$
Analytic cond. $463.771$
Root an. cond. $21.5353$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s + 2·13-s − 15-s + 6·19-s + 2·21-s + 8·23-s + 25-s − 27-s + 8·29-s + 4·31-s − 2·35-s − 6·37-s − 2·39-s + 12·41-s − 6·43-s + 45-s − 3·49-s + 2·53-s − 6·57-s − 4·59-s − 2·61-s − 2·63-s + 2·65-s − 12·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.554·13-s − 0.258·15-s + 1.37·19-s + 0.436·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 1.48·29-s + 0.718·31-s − 0.338·35-s − 0.986·37-s − 0.320·39-s + 1.87·41-s − 0.914·43-s + 0.149·45-s − 3/7·49-s + 0.274·53-s − 0.794·57-s − 0.520·59-s − 0.256·61-s − 0.251·63-s + 0.248·65-s − 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58080\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(463.771\)
Root analytic conductor: \(21.5353\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 58080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69367590300738, −13.83683267126190, −13.61732765104814, −13.11892627776778, −12.58963573405725, −11.98600644982192, −11.70976203307348, −10.84910126780147, −10.65799394473651, −9.946033659996525, −9.574150283741040, −8.968731893212113, −8.553707322077603, −7.669081671561467, −7.219391241163428, −6.543058372130765, −6.272974640316468, −5.571268263235958, −5.065574989100860, −4.523079555506621, −3.723838710125862, −2.911067092124756, −2.763801754268101, −1.340403661661271, −1.121924228634820, 0, 1.121924228634820, 1.340403661661271, 2.763801754268101, 2.911067092124756, 3.723838710125862, 4.523079555506621, 5.065574989100860, 5.571268263235958, 6.272974640316468, 6.543058372130765, 7.219391241163428, 7.669081671561467, 8.553707322077603, 8.968731893212113, 9.574150283741040, 9.946033659996525, 10.65799394473651, 10.84910126780147, 11.70976203307348, 11.98600644982192, 12.58963573405725, 13.11892627776778, 13.61732765104814, 13.83683267126190, 14.69367590300738

Graph of the $Z$-function along the critical line