Properties

Label 2-58080-1.1-c1-0-9
Degree $2$
Conductor $58080$
Sign $1$
Analytic cond. $463.771$
Root an. cond. $21.5353$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 3·13-s − 15-s + 17-s + 5·19-s + 21-s − 2·23-s + 25-s − 27-s − 3·29-s − 8·31-s − 35-s + 5·37-s + 3·39-s + 12·41-s − 4·43-s + 45-s + 10·47-s − 6·49-s − 51-s − 2·53-s − 5·57-s − 6·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.832·13-s − 0.258·15-s + 0.242·17-s + 1.14·19-s + 0.218·21-s − 0.417·23-s + 1/5·25-s − 0.192·27-s − 0.557·29-s − 1.43·31-s − 0.169·35-s + 0.821·37-s + 0.480·39-s + 1.87·41-s − 0.609·43-s + 0.149·45-s + 1.45·47-s − 6/7·49-s − 0.140·51-s − 0.274·53-s − 0.662·57-s − 0.781·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58080\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(463.771\)
Root analytic conductor: \(21.5353\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 58080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.568823055\)
\(L(\frac12)\) \(\approx\) \(1.568823055\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 13 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.29698324194968, −13.99337460821219, −13.13538693041228, −12.79099489044130, −12.46218124016183, −11.74565930693262, −11.31807095879387, −10.85935486767495, −10.13121311995831, −9.753436878606798, −9.367625057462882, −8.835509258548301, −7.918546625606713, −7.449429270819323, −7.101237163812340, −6.309553663456844, −5.817383079196086, −5.381840024755708, −4.827523251454910, −4.079059789858098, −3.490287001294668, −2.707498326185746, −2.106329485119033, −1.266798395166388, −0.4681690391427105, 0.4681690391427105, 1.266798395166388, 2.106329485119033, 2.707498326185746, 3.490287001294668, 4.079059789858098, 4.827523251454910, 5.381840024755708, 5.817383079196086, 6.309553663456844, 7.101237163812340, 7.449429270819323, 7.918546625606713, 8.835509258548301, 9.367625057462882, 9.753436878606798, 10.13121311995831, 10.85935486767495, 11.31807095879387, 11.74565930693262, 12.46218124016183, 12.79099489044130, 13.13538693041228, 13.99337460821219, 14.29698324194968

Graph of the $Z$-function along the critical line