Properties

Label 2-58800-1.1-c1-0-163
Degree $2$
Conductor $58800$
Sign $-1$
Analytic cond. $469.520$
Root an. cond. $21.6684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 3·11-s + 13-s − 7·19-s − 5·23-s + 27-s + 6·31-s − 3·33-s − 3·37-s + 39-s + 3·41-s + 8·43-s + 47-s − 5·53-s − 7·57-s − 4·59-s + 8·61-s − 5·69-s + 6·71-s − 14·73-s + 16·79-s + 81-s + 16·83-s − 6·89-s + 6·93-s + 16·97-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.904·11-s + 0.277·13-s − 1.60·19-s − 1.04·23-s + 0.192·27-s + 1.07·31-s − 0.522·33-s − 0.493·37-s + 0.160·39-s + 0.468·41-s + 1.21·43-s + 0.145·47-s − 0.686·53-s − 0.927·57-s − 0.520·59-s + 1.02·61-s − 0.601·69-s + 0.712·71-s − 1.63·73-s + 1.80·79-s + 1/9·81-s + 1.75·83-s − 0.635·89-s + 0.622·93-s + 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(58800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(469.520\)
Root analytic conductor: \(21.6684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 58800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - T + p T^{2} \)
53 \( 1 + 5 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.57955247889153, −14.05398339041032, −13.58620690171007, −13.15388636292091, −12.52225457989181, −12.30135408401430, −11.50697065008264, −10.90122883060256, −10.43602563626131, −10.10904977501148, −9.360209011441947, −8.909059807505478, −8.234782906619250, −8.001918321340518, −7.426445939327318, −6.644860964588996, −6.216955475616820, −5.629111242055402, −4.846784487106846, −4.330941396444921, −3.782156724526464, −3.058476887834843, −2.326218990148043, −2.008419252823793, −0.9350577989650694, 0, 0.9350577989650694, 2.008419252823793, 2.326218990148043, 3.058476887834843, 3.782156724526464, 4.330941396444921, 4.846784487106846, 5.629111242055402, 6.216955475616820, 6.644860964588996, 7.426445939327318, 8.001918321340518, 8.234782906619250, 8.909059807505478, 9.360209011441947, 10.10904977501148, 10.43602563626131, 10.90122883060256, 11.50697065008264, 12.30135408401430, 12.52225457989181, 13.15388636292091, 13.58620690171007, 14.05398339041032, 14.57955247889153

Graph of the $Z$-function along the critical line