L(s) = 1 | + 2-s + 4-s − 2·5-s + 8-s − 3·9-s − 2·10-s + 2·13-s + 16-s − 6·17-s − 3·18-s + 4·19-s − 2·20-s + 8·23-s − 25-s + 2·26-s + 2·29-s − 31-s + 32-s − 6·34-s − 3·36-s + 10·37-s + 4·38-s − 2·40-s − 6·41-s + 8·43-s + 6·45-s + 8·46-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 9-s − 0.632·10-s + 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.707·18-s + 0.917·19-s − 0.447·20-s + 1.66·23-s − 1/5·25-s + 0.392·26-s + 0.371·29-s − 0.179·31-s + 0.176·32-s − 1.02·34-s − 1/2·36-s + 1.64·37-s + 0.648·38-s − 0.316·40-s − 0.937·41-s + 1.21·43-s + 0.894·45-s + 1.17·46-s + ⋯ |
Λ(s)=(=(62s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(62s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.108740660 |
L(21) |
≈ |
1.108740660 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 31 | 1+T |
good | 3 | 1+pT2 |
| 5 | 1+2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1−2T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.05691750776431447573088356666, −13.90986476156025600386975635688, −12.88268162615932246882266504036, −11.52935425193863190686584011034, −11.06274569152331522479839207162, −9.056498267458590117851162621111, −7.76857292337562945056886541715, −6.32858579420662158347624019611, −4.74203912193695697715499891246, −3.16188554299090604324575557253,
3.16188554299090604324575557253, 4.74203912193695697715499891246, 6.32858579420662158347624019611, 7.76857292337562945056886541715, 9.056498267458590117851162621111, 11.06274569152331522479839207162, 11.52935425193863190686584011034, 12.88268162615932246882266504036, 13.90986476156025600386975635688, 15.05691750776431447573088356666