L(s) = 1 | − 2·5-s − 4·7-s + 11-s − 6·13-s − 6·17-s − 8·19-s − 25-s − 6·29-s + 8·35-s − 6·37-s + 10·41-s − 8·43-s + 9·49-s + 6·53-s − 2·55-s − 4·59-s + 2·61-s + 12·65-s − 12·67-s − 8·71-s + 2·73-s − 4·77-s + 4·79-s + 12·83-s + 12·85-s + 6·89-s + 24·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.51·7-s + 0.301·11-s − 1.66·13-s − 1.45·17-s − 1.83·19-s − 1/5·25-s − 1.11·29-s + 1.35·35-s − 0.986·37-s + 1.56·41-s − 1.21·43-s + 9/7·49-s + 0.824·53-s − 0.269·55-s − 0.520·59-s + 0.256·61-s + 1.48·65-s − 1.46·67-s − 0.949·71-s + 0.234·73-s − 0.455·77-s + 0.450·79-s + 1.31·83-s + 1.30·85-s + 0.635·89-s + 2.51·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 - 10 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.26761467471206446277452494394, −6.64789914404096307221037476012, −6.16512151881297020294415434382, −5.05923018649433147904755872370, −4.21904055084523704623394988253, −3.77935606629209915642007051847, −2.73981822679906449127385775603, −2.06536264866853690522154791248, 0, 0,
2.06536264866853690522154791248, 2.73981822679906449127385775603, 3.77935606629209915642007051847, 4.21904055084523704623394988253, 5.05923018649433147904755872370, 6.16512151881297020294415434382, 6.64789914404096307221037476012, 7.26761467471206446277452494394