Properties

Label 2-6384-1.1-c1-0-53
Degree $2$
Conductor $6384$
Sign $1$
Analytic cond. $50.9764$
Root an. cond. $7.13978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s − 7-s + 9-s + 2·11-s − 4·15-s + 8·17-s − 19-s + 21-s + 6·23-s + 11·25-s − 27-s − 2·29-s + 8·31-s − 2·33-s − 4·35-s − 10·37-s + 2·41-s + 8·43-s + 4·45-s − 8·47-s + 49-s − 8·51-s − 2·53-s + 8·55-s + 57-s − 12·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s − 0.377·7-s + 1/3·9-s + 0.603·11-s − 1.03·15-s + 1.94·17-s − 0.229·19-s + 0.218·21-s + 1.25·23-s + 11/5·25-s − 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.348·33-s − 0.676·35-s − 1.64·37-s + 0.312·41-s + 1.21·43-s + 0.596·45-s − 1.16·47-s + 1/7·49-s − 1.12·51-s − 0.274·53-s + 1.07·55-s + 0.132·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6384\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(50.9764\)
Root analytic conductor: \(7.13978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6384,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.764004484\)
\(L(\frac12)\) \(\approx\) \(2.764004484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.999459029265568668646334994554, −7.04303450846839301489876696091, −6.49863421244456238514997794656, −5.87434780378740204065553547875, −5.36608813272941930176848669270, −4.68990489956707774879555198772, −3.47048086745469615917922129631, −2.74176650189019429236281557656, −1.62766242092232036468125467242, −0.983095089851999490187474980896, 0.983095089851999490187474980896, 1.62766242092232036468125467242, 2.74176650189019429236281557656, 3.47048086745469615917922129631, 4.68990489956707774879555198772, 5.36608813272941930176848669270, 5.87434780378740204065553547875, 6.49863421244456238514997794656, 7.04303450846839301489876696091, 7.999459029265568668646334994554

Graph of the $Z$-function along the critical line