L(s) = 1 | + 5-s − 2·7-s − 3·9-s − 6·11-s + 2·13-s − 6·17-s + 2·19-s − 6·23-s + 25-s + 6·29-s − 4·31-s − 2·35-s + 6·37-s − 2·41-s − 4·43-s − 3·45-s + 10·47-s − 3·49-s + 2·53-s − 6·55-s − 10·59-s − 10·61-s + 6·63-s + 2·65-s + 4·67-s − 16·71-s − 6·73-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s − 9-s − 1.80·11-s + 0.554·13-s − 1.45·17-s + 0.458·19-s − 1.25·23-s + 1/5·25-s + 1.11·29-s − 0.718·31-s − 0.338·35-s + 0.986·37-s − 0.312·41-s − 0.609·43-s − 0.447·45-s + 1.45·47-s − 3/7·49-s + 0.274·53-s − 0.809·55-s − 1.30·59-s − 1.28·61-s + 0.755·63-s + 0.248·65-s + 0.488·67-s − 1.89·71-s − 0.702·73-s + ⋯ |
Λ(s)=(=(640s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(640s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
good | 3 | 1+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−10T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27119522394318848101695814883, −9.240805137182251408961722561285, −8.459530406419082967845984524867, −7.57454589175301650317308735633, −6.31867615323075833576541028992, −5.74481417491481656913857127073, −4.64601077885432605050562198244, −3.15828578541213785461358104860, −2.31650484656215274723281292429, 0,
2.31650484656215274723281292429, 3.15828578541213785461358104860, 4.64601077885432605050562198244, 5.74481417491481656913857127073, 6.31867615323075833576541028992, 7.57454589175301650317308735633, 8.459530406419082967845984524867, 9.240805137182251408961722561285, 10.27119522394318848101695814883