Properties

Label 2-640-1.1-c1-0-14
Degree $2$
Conductor $640$
Sign $-1$
Analytic cond. $5.11042$
Root an. cond. $2.26062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 3·9-s − 6·11-s + 2·13-s − 6·17-s + 2·19-s − 6·23-s + 25-s + 6·29-s − 4·31-s − 2·35-s + 6·37-s − 2·41-s − 4·43-s − 3·45-s + 10·47-s − 3·49-s + 2·53-s − 6·55-s − 10·59-s − 10·61-s + 6·63-s + 2·65-s + 4·67-s − 16·71-s − 6·73-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 9-s − 1.80·11-s + 0.554·13-s − 1.45·17-s + 0.458·19-s − 1.25·23-s + 1/5·25-s + 1.11·29-s − 0.718·31-s − 0.338·35-s + 0.986·37-s − 0.312·41-s − 0.609·43-s − 0.447·45-s + 1.45·47-s − 3/7·49-s + 0.274·53-s − 0.809·55-s − 1.30·59-s − 1.28·61-s + 0.755·63-s + 0.248·65-s + 0.488·67-s − 1.89·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(640\)    =    \(2^{7} \cdot 5\)
Sign: $-1$
Analytic conductor: \(5.11042\)
Root analytic conductor: \(2.26062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 640,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
good3 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27119522394318848101695814883, −9.240805137182251408961722561285, −8.459530406419082967845984524867, −7.57454589175301650317308735633, −6.31867615323075833576541028992, −5.74481417491481656913857127073, −4.64601077885432605050562198244, −3.15828578541213785461358104860, −2.31650484656215274723281292429, 0, 2.31650484656215274723281292429, 3.15828578541213785461358104860, 4.64601077885432605050562198244, 5.74481417491481656913857127073, 6.31867615323075833576541028992, 7.57454589175301650317308735633, 8.459530406419082967845984524867, 9.240805137182251408961722561285, 10.27119522394318848101695814883

Graph of the $Z$-function along the critical line