L(s) = 1 | + 7-s + 2·11-s − 13-s + 6·17-s − 8·19-s + 4·23-s − 5·25-s + 6·29-s + 4·31-s − 2·37-s + 4·43-s + 6·47-s + 49-s − 6·53-s − 10·59-s + 10·61-s − 4·67-s + 6·71-s + 6·73-s + 2·77-s − 6·83-s + 12·89-s − 91-s − 2·97-s + 14·101-s + 8·103-s − 6·109-s + ⋯ |
L(s) = 1 | + 0.377·7-s + 0.603·11-s − 0.277·13-s + 1.45·17-s − 1.83·19-s + 0.834·23-s − 25-s + 1.11·29-s + 0.718·31-s − 0.328·37-s + 0.609·43-s + 0.875·47-s + 1/7·49-s − 0.824·53-s − 1.30·59-s + 1.28·61-s − 0.488·67-s + 0.712·71-s + 0.702·73-s + 0.227·77-s − 0.658·83-s + 1.27·89-s − 0.104·91-s − 0.203·97-s + 1.39·101-s + 0.788·103-s − 0.574·109-s + ⋯ |
Λ(s)=(=(6552s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6552s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.183625796 |
L(21) |
≈ |
2.183625796 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1+T |
good | 5 | 1+pT2 |
| 11 | 1−2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.020826581727519939478446233088, −7.37342652208140642174399731054, −6.51056181261956265586124256402, −6.00209048136519658428399884673, −5.08670990306916741113411991854, −4.41012325330574180793620936540, −3.66615611131011434255405278277, −2.72348096868692540422321530716, −1.80387105369187633275033274184, −0.78342614189904650346580328544,
0.78342614189904650346580328544, 1.80387105369187633275033274184, 2.72348096868692540422321530716, 3.66615611131011434255405278277, 4.41012325330574180793620936540, 5.08670990306916741113411991854, 6.00209048136519658428399884673, 6.51056181261956265586124256402, 7.37342652208140642174399731054, 8.020826581727519939478446233088