Properties

Label 2-6552-1.1-c1-0-48
Degree $2$
Conductor $6552$
Sign $1$
Analytic cond. $52.3179$
Root an. cond. $7.23311$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s + 4·11-s + 13-s + 6·17-s + 4·19-s − 25-s − 6·29-s + 2·35-s + 6·37-s + 6·41-s + 4·43-s + 49-s + 2·53-s + 8·55-s − 4·59-s − 2·61-s + 2·65-s + 4·67-s − 6·73-s + 4·77-s + 8·79-s − 12·83-s + 12·85-s − 10·89-s + 91-s + 8·95-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s + 1.20·11-s + 0.277·13-s + 1.45·17-s + 0.917·19-s − 1/5·25-s − 1.11·29-s + 0.338·35-s + 0.986·37-s + 0.937·41-s + 0.609·43-s + 1/7·49-s + 0.274·53-s + 1.07·55-s − 0.520·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s − 0.702·73-s + 0.455·77-s + 0.900·79-s − 1.31·83-s + 1.30·85-s − 1.05·89-s + 0.104·91-s + 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6552\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(52.3179\)
Root analytic conductor: \(7.23311\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.204692505\)
\(L(\frac12)\) \(\approx\) \(3.204692505\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86808902150910022748272179233, −7.40638260288841524859508132736, −6.48964132982911825714556354626, −5.75789024080702081831307579096, −5.44384505756742781933018364260, −4.32328205164357812303218546295, −3.64183458737992114265619645944, −2.72073979031890227895774674961, −1.65031570417369949078072999027, −1.03907702587109094101826337827, 1.03907702587109094101826337827, 1.65031570417369949078072999027, 2.72073979031890227895774674961, 3.64183458737992114265619645944, 4.32328205164357812303218546295, 5.44384505756742781933018364260, 5.75789024080702081831307579096, 6.48964132982911825714556354626, 7.40638260288841524859508132736, 7.86808902150910022748272179233

Graph of the $Z$-function along the critical line