L(s) = 1 | + 2·5-s + 7-s + 4·11-s + 13-s + 6·17-s + 4·19-s − 25-s − 6·29-s + 2·35-s + 6·37-s + 6·41-s + 4·43-s + 49-s + 2·53-s + 8·55-s − 4·59-s − 2·61-s + 2·65-s + 4·67-s − 6·73-s + 4·77-s + 8·79-s − 12·83-s + 12·85-s − 10·89-s + 91-s + 8·95-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.377·7-s + 1.20·11-s + 0.277·13-s + 1.45·17-s + 0.917·19-s − 1/5·25-s − 1.11·29-s + 0.338·35-s + 0.986·37-s + 0.937·41-s + 0.609·43-s + 1/7·49-s + 0.274·53-s + 1.07·55-s − 0.520·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s − 0.702·73-s + 0.455·77-s + 0.900·79-s − 1.31·83-s + 1.30·85-s − 1.05·89-s + 0.104·91-s + 0.820·95-s + ⋯ |
Λ(s)=(=(6552s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6552s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.204692505 |
L(21) |
≈ |
3.204692505 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1−T |
good | 5 | 1−2T+pT2 |
| 11 | 1−4T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.86808902150910022748272179233, −7.40638260288841524859508132736, −6.48964132982911825714556354626, −5.75789024080702081831307579096, −5.44384505756742781933018364260, −4.32328205164357812303218546295, −3.64183458737992114265619645944, −2.72073979031890227895774674961, −1.65031570417369949078072999027, −1.03907702587109094101826337827,
1.03907702587109094101826337827, 1.65031570417369949078072999027, 2.72073979031890227895774674961, 3.64183458737992114265619645944, 4.32328205164357812303218546295, 5.44384505756742781933018364260, 5.75789024080702081831307579096, 6.48964132982911825714556354626, 7.40638260288841524859508132736, 7.86808902150910022748272179233