Properties

Label 2-702-1.1-c1-0-11
Degree $2$
Conductor $702$
Sign $-1$
Analytic cond. $5.60549$
Root an. cond. $2.36759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 5·7-s − 8-s − 10-s + 5·11-s − 13-s + 5·14-s + 16-s − 6·17-s − 6·19-s + 20-s − 5·22-s + 4·23-s − 4·25-s + 26-s − 5·28-s − 2·29-s + 31-s − 32-s + 6·34-s − 5·35-s − 6·37-s + 6·38-s − 40-s − 12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.88·7-s − 0.353·8-s − 0.316·10-s + 1.50·11-s − 0.277·13-s + 1.33·14-s + 1/4·16-s − 1.45·17-s − 1.37·19-s + 0.223·20-s − 1.06·22-s + 0.834·23-s − 4/5·25-s + 0.196·26-s − 0.944·28-s − 0.371·29-s + 0.179·31-s − 0.176·32-s + 1.02·34-s − 0.845·35-s − 0.986·37-s + 0.973·38-s − 0.158·40-s − 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(702\)    =    \(2 \cdot 3^{3} \cdot 13\)
Sign: $-1$
Analytic conductor: \(5.60549\)
Root analytic conductor: \(2.36759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + 5 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 13 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 15 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.897800505878514138826918489618, −9.064499359203391672641516805909, −8.799134072098402372739077096433, −7.10065667097095096519189382958, −6.57913304235760950474733326879, −5.99142080412013975847311847942, −4.26906324020580354961834542498, −3.19209557202869156366521081245, −1.92254093563913484185105860470, 0, 1.92254093563913484185105860470, 3.19209557202869156366521081245, 4.26906324020580354961834542498, 5.99142080412013975847311847942, 6.57913304235760950474733326879, 7.10065667097095096519189382958, 8.799134072098402372739077096433, 9.064499359203391672641516805909, 9.897800505878514138826918489618

Graph of the $Z$-function along the critical line