L(s) = 1 | − 2-s + 4-s + 5-s − 5·7-s − 8-s − 10-s + 5·11-s − 13-s + 5·14-s + 16-s − 6·17-s − 6·19-s + 20-s − 5·22-s + 4·23-s − 4·25-s + 26-s − 5·28-s − 2·29-s + 31-s − 32-s + 6·34-s − 5·35-s − 6·37-s + 6·38-s − 40-s − 12·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.88·7-s − 0.353·8-s − 0.316·10-s + 1.50·11-s − 0.277·13-s + 1.33·14-s + 1/4·16-s − 1.45·17-s − 1.37·19-s + 0.223·20-s − 1.06·22-s + 0.834·23-s − 4/5·25-s + 0.196·26-s − 0.944·28-s − 0.371·29-s + 0.179·31-s − 0.176·32-s + 1.02·34-s − 0.845·35-s − 0.986·37-s + 0.973·38-s − 0.158·40-s − 1.87·41-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1−T+pT2 |
| 7 | 1+5T+pT2 |
| 11 | 1−5T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1−T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1+12T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1+3T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1+13T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+15T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.897800505878514138826918489618, −9.064499359203391672641516805909, −8.799134072098402372739077096433, −7.10065667097095096519189382958, −6.57913304235760950474733326879, −5.99142080412013975847311847942, −4.26906324020580354961834542498, −3.19209557202869156366521081245, −1.92254093563913484185105860470, 0,
1.92254093563913484185105860470, 3.19209557202869156366521081245, 4.26906324020580354961834542498, 5.99142080412013975847311847942, 6.57913304235760950474733326879, 7.10065667097095096519189382958, 8.799134072098402372739077096433, 9.064499359203391672641516805909, 9.897800505878514138826918489618