Properties

Label 2-71148-1.1-c1-0-60
Degree $2$
Conductor $71148$
Sign $-1$
Analytic cond. $568.119$
Root an. cond. $23.8352$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 4·13-s + 2·15-s − 6·17-s − 8·19-s − 6·23-s − 25-s + 27-s + 10·29-s + 4·31-s + 6·37-s + 4·39-s + 6·41-s − 4·43-s + 2·45-s + 8·47-s − 6·51-s + 2·53-s − 8·57-s − 4·59-s + 8·61-s + 8·65-s − 8·67-s − 6·69-s − 10·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 1.10·13-s + 0.516·15-s − 1.45·17-s − 1.83·19-s − 1.25·23-s − 1/5·25-s + 0.192·27-s + 1.85·29-s + 0.718·31-s + 0.986·37-s + 0.640·39-s + 0.937·41-s − 0.609·43-s + 0.298·45-s + 1.16·47-s − 0.840·51-s + 0.274·53-s − 1.05·57-s − 0.520·59-s + 1.02·61-s + 0.992·65-s − 0.977·67-s − 0.722·69-s − 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71148 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71148 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(71148\)    =    \(2^{2} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(568.119\)
Root analytic conductor: \(23.8352\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 71148,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28003208087957, −13.72756200714809, −13.53807608521237, −12.97998988324428, −12.58958398184337, −11.86026557319524, −11.32024933444921, −10.73335932443355, −10.20760470454318, −10.00177223656131, −9.111211369791003, −8.791976366846008, −8.361224857409866, −7.918561695592220, −7.014067208348624, −6.496492353563246, −6.075442342328436, −5.762546351465232, −4.551312361224843, −4.373238432174673, −3.827580851605615, −2.754107280478251, −2.445506915279035, −1.816191057584625, −1.106934709005042, 0, 1.106934709005042, 1.816191057584625, 2.445506915279035, 2.754107280478251, 3.827580851605615, 4.373238432174673, 4.551312361224843, 5.762546351465232, 6.075442342328436, 6.496492353563246, 7.014067208348624, 7.918561695592220, 8.361224857409866, 8.791976366846008, 9.111211369791003, 10.00177223656131, 10.20760470454318, 10.73335932443355, 11.32024933444921, 11.86026557319524, 12.58958398184337, 12.97998988324428, 13.53807608521237, 13.72756200714809, 14.28003208087957

Graph of the $Z$-function along the critical line