Properties

Label 2-7440-1.1-c1-0-54
Degree $2$
Conductor $7440$
Sign $1$
Analytic cond. $59.4086$
Root an. cond. $7.70770$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s + 4·11-s + 6·13-s − 15-s + 2·17-s − 4·19-s + 8·23-s + 25-s − 27-s + 6·29-s + 31-s − 4·33-s − 2·37-s − 6·39-s + 10·41-s + 4·43-s + 45-s − 7·49-s − 2·51-s − 10·53-s + 4·55-s + 4·57-s + 12·59-s − 2·61-s + 6·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s + 1.20·11-s + 1.66·13-s − 0.258·15-s + 0.485·17-s − 0.917·19-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.179·31-s − 0.696·33-s − 0.328·37-s − 0.960·39-s + 1.56·41-s + 0.609·43-s + 0.149·45-s − 49-s − 0.280·51-s − 1.37·53-s + 0.539·55-s + 0.529·57-s + 1.56·59-s − 0.256·61-s + 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7440\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(59.4086\)
Root analytic conductor: \(7.70770\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.488400491\)
\(L(\frac12)\) \(\approx\) \(2.488400491\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.952418916075434749361279985637, −6.88246346082924064334153856038, −6.46786428019455517543118893027, −5.96454234827988216942923974692, −5.14595438983531183116874464717, −4.31899860893846250195620811503, −3.66329218384675427078549218754, −2.73098877920014273376825766211, −1.46104309889883464380034770543, −0.945501887428634190883132606774, 0.945501887428634190883132606774, 1.46104309889883464380034770543, 2.73098877920014273376825766211, 3.66329218384675427078549218754, 4.31899860893846250195620811503, 5.14595438983531183116874464717, 5.96454234827988216942923974692, 6.46786428019455517543118893027, 6.88246346082924064334153856038, 7.952418916075434749361279985637

Graph of the $Z$-function along the critical line