Properties

Label 2-90e2-1.1-c1-0-32
Degree $2$
Conductor $8100$
Sign $1$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 4·13-s + 6·17-s + 2·19-s + 3·23-s + 3·29-s − 10·31-s + 10·37-s + 9·41-s + 4·43-s − 9·47-s − 6·49-s + 6·53-s − 6·59-s − 61-s − 11·67-s + 12·71-s + 4·73-s − 10·79-s + 9·83-s + 9·89-s + 4·91-s + 10·97-s − 18·101-s − 8·103-s − 9·107-s − 19·109-s + ⋯
L(s)  = 1  + 0.377·7-s + 1.10·13-s + 1.45·17-s + 0.458·19-s + 0.625·23-s + 0.557·29-s − 1.79·31-s + 1.64·37-s + 1.40·41-s + 0.609·43-s − 1.31·47-s − 6/7·49-s + 0.824·53-s − 0.781·59-s − 0.128·61-s − 1.34·67-s + 1.42·71-s + 0.468·73-s − 1.12·79-s + 0.987·83-s + 0.953·89-s + 0.419·91-s + 1.01·97-s − 1.79·101-s − 0.788·103-s − 0.870·107-s − 1.81·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.620046247\)
\(L(\frac12)\) \(\approx\) \(2.620046247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85183412692991280268209321471, −7.27216683550176494467412774295, −6.34434458519697831088386530205, −5.73985647429667001325056621147, −5.12887363326197211119950499689, −4.22921397807776347434098543844, −3.49051681868049102661843268989, −2.78682666271959125150566575636, −1.59168497822819124815584438671, −0.873023944465869602770010516044, 0.873023944465869602770010516044, 1.59168497822819124815584438671, 2.78682666271959125150566575636, 3.49051681868049102661843268989, 4.22921397807776347434098543844, 5.12887363326197211119950499689, 5.73985647429667001325056621147, 6.34434458519697831088386530205, 7.27216683550176494467412774295, 7.85183412692991280268209321471

Graph of the $Z$-function along the critical line