Properties

Label 2-816-1.1-c1-0-2
Degree $2$
Conductor $816$
Sign $1$
Analytic cond. $6.51579$
Root an. cond. $2.55260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 2·13-s − 17-s + 4·19-s + 2·21-s + 6·23-s − 5·25-s − 27-s + 10·31-s + 8·37-s − 2·39-s + 6·41-s + 4·43-s − 12·47-s − 3·49-s + 51-s + 6·53-s − 4·57-s + 12·59-s + 8·61-s − 2·63-s + 4·67-s − 6·69-s − 6·71-s + 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.554·13-s − 0.242·17-s + 0.917·19-s + 0.436·21-s + 1.25·23-s − 25-s − 0.192·27-s + 1.79·31-s + 1.31·37-s − 0.320·39-s + 0.937·41-s + 0.609·43-s − 1.75·47-s − 3/7·49-s + 0.140·51-s + 0.824·53-s − 0.529·57-s + 1.56·59-s + 1.02·61-s − 0.251·63-s + 0.488·67-s − 0.722·69-s − 0.712·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(816\)    =    \(2^{4} \cdot 3 \cdot 17\)
Sign: $1$
Analytic conductor: \(6.51579\)
Root analytic conductor: \(2.55260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 816,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.194137070\)
\(L(\frac12)\) \(\approx\) \(1.194137070\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08694532952722620244587438047, −9.629005176149752438633105274587, −8.584868551115419667042947592500, −7.57323216500839527256914149425, −6.62762171992257665130856519803, −5.95967651264422152670977788910, −4.94376122657450226002634205632, −3.84609690192901140186989283204, −2.71372337045158087575655535987, −0.943136411131521382953657369703, 0.943136411131521382953657369703, 2.71372337045158087575655535987, 3.84609690192901140186989283204, 4.94376122657450226002634205632, 5.95967651264422152670977788910, 6.62762171992257665130856519803, 7.57323216500839527256914149425, 8.584868551115419667042947592500, 9.629005176149752438633105274587, 10.08694532952722620244587438047

Graph of the $Z$-function along the critical line