Properties

Label 2-8280-1.1-c1-0-86
Degree $2$
Conductor $8280$
Sign $-1$
Analytic cond. $66.1161$
Root an. cond. $8.13118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 13-s + 4·17-s − 4·19-s − 23-s + 25-s + 3·29-s − 31-s − 2·35-s − 8·37-s + 5·41-s − 6·43-s − 9·47-s − 3·49-s − 2·53-s + 65-s + 4·67-s − 3·71-s + 7·73-s + 4·79-s − 8·83-s + 4·85-s + 14·89-s − 2·91-s − 4·95-s − 14·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 0.277·13-s + 0.970·17-s − 0.917·19-s − 0.208·23-s + 1/5·25-s + 0.557·29-s − 0.179·31-s − 0.338·35-s − 1.31·37-s + 0.780·41-s − 0.914·43-s − 1.31·47-s − 3/7·49-s − 0.274·53-s + 0.124·65-s + 0.488·67-s − 0.356·71-s + 0.819·73-s + 0.450·79-s − 0.878·83-s + 0.433·85-s + 1.48·89-s − 0.209·91-s − 0.410·95-s − 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8280\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(66.1161\)
Root analytic conductor: \(8.13118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41828221426730488565657012205, −6.58312615606714474227509842902, −6.24103414973355131926441249927, −5.41411450162870433403656312461, −4.73502907055562708350414375027, −3.72156006813250260796216967867, −3.17490651892526508204222014921, −2.22114910796226392630475232768, −1.29434324689996725627123353605, 0, 1.29434324689996725627123353605, 2.22114910796226392630475232768, 3.17490651892526508204222014921, 3.72156006813250260796216967867, 4.73502907055562708350414375027, 5.41411450162870433403656312461, 6.24103414973355131926441249927, 6.58312615606714474227509842902, 7.41828221426730488565657012205

Graph of the $Z$-function along the critical line