L(s) = 1 | + 5-s − 2·7-s + 13-s + 4·17-s − 4·19-s − 23-s + 25-s + 3·29-s − 31-s − 2·35-s − 8·37-s + 5·41-s − 6·43-s − 9·47-s − 3·49-s − 2·53-s + 65-s + 4·67-s − 3·71-s + 7·73-s + 4·79-s − 8·83-s + 4·85-s + 14·89-s − 2·91-s − 4·95-s − 14·97-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s + 0.277·13-s + 0.970·17-s − 0.917·19-s − 0.208·23-s + 1/5·25-s + 0.557·29-s − 0.179·31-s − 0.338·35-s − 1.31·37-s + 0.780·41-s − 0.914·43-s − 1.31·47-s − 3/7·49-s − 0.274·53-s + 0.124·65-s + 0.488·67-s − 0.356·71-s + 0.819·73-s + 0.450·79-s − 0.878·83-s + 0.433·85-s + 1.48·89-s − 0.209·91-s − 0.410·95-s − 1.42·97-s + ⋯ |
Λ(s)=(=(8280s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8280s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 23 | 1+T |
good | 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1+4T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1+T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−5T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+9T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+3T+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1−14T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.41828221426730488565657012205, −6.58312615606714474227509842902, −6.24103414973355131926441249927, −5.41411450162870433403656312461, −4.73502907055562708350414375027, −3.72156006813250260796216967867, −3.17490651892526508204222014921, −2.22114910796226392630475232768, −1.29434324689996725627123353605, 0,
1.29434324689996725627123353605, 2.22114910796226392630475232768, 3.17490651892526508204222014921, 3.72156006813250260796216967867, 4.73502907055562708350414375027, 5.41411450162870433403656312461, 6.24103414973355131926441249927, 6.58312615606714474227509842902, 7.41828221426730488565657012205