L(s) = 1 | + 5-s − 2·7-s − 3·11-s + 5·13-s + 3·17-s − 7·23-s + 25-s − 5·29-s + 5·31-s − 2·35-s + 6·37-s − 9·43-s − 9·47-s − 3·49-s + 8·53-s − 3·55-s + 4·59-s − 14·61-s + 5·65-s − 12·67-s + 8·71-s − 2·73-s + 6·77-s + 11·79-s − 6·83-s + 3·85-s − 10·91-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s − 0.904·11-s + 1.38·13-s + 0.727·17-s − 1.45·23-s + 1/5·25-s − 0.928·29-s + 0.898·31-s − 0.338·35-s + 0.986·37-s − 1.37·43-s − 1.31·47-s − 3/7·49-s + 1.09·53-s − 0.404·55-s + 0.520·59-s − 1.79·61-s + 0.620·65-s − 1.46·67-s + 0.949·71-s − 0.234·73-s + 0.683·77-s + 1.23·79-s − 0.658·83-s + 0.325·85-s − 1.04·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + 3 T + p T^{2} \) |
| 13 | \( 1 - 5 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 7 T + p T^{2} \) |
| 29 | \( 1 + 5 T + p T^{2} \) |
| 31 | \( 1 - 5 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 9 T + p T^{2} \) |
| 47 | \( 1 + 9 T + p T^{2} \) |
| 53 | \( 1 - 8 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 11 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.57354770803764332847026184609, −6.46531934652534119977473530215, −6.14879589933546788841570181674, −5.50998246455415878307184395860, −4.66254151949159228346382900078, −3.68887594552445571326001269165, −3.16912388244464292440364938606, −2.21803062313216494590426717324, −1.27484308626134601310941930870, 0,
1.27484308626134601310941930870, 2.21803062313216494590426717324, 3.16912388244464292440364938606, 3.68887594552445571326001269165, 4.66254151949159228346382900078, 5.50998246455415878307184395860, 6.14879589933546788841570181674, 6.46531934652534119977473530215, 7.57354770803764332847026184609