L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 3·7-s − 8-s + 9-s − 3·11-s − 12-s + 5·13-s − 3·14-s + 16-s − 17-s − 18-s − 2·19-s − 3·21-s + 3·22-s + 24-s − 5·26-s − 27-s + 3·28-s − 6·29-s − 2·31-s − 32-s + 3·33-s + 34-s + 36-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.904·11-s − 0.288·12-s + 1.38·13-s − 0.801·14-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.458·19-s − 0.654·21-s + 0.639·22-s + 0.204·24-s − 0.980·26-s − 0.192·27-s + 0.566·28-s − 1.11·29-s − 0.359·31-s − 0.176·32-s + 0.522·33-s + 0.171·34-s + 1/6·36-s + ⋯ |
Λ(s)=(=(8850s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8850s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
| 59 | 1+T |
good | 7 | 1−3T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1−5T+pT2 |
| 17 | 1+T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−5T+pT2 |
| 41 | 1−T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+9T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1−T+pT2 |
| 83 | 1+15T+pT2 |
| 89 | 1+16T+pT2 |
| 97 | 1+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.51641777061424011766017254141, −6.85968241202142381330201694430, −5.88267173286614013533134098576, −5.61803826822241723304384507825, −4.63080403494839023271633987682, −3.98287875236199371416176310655, −2.88320061980396347599630187844, −1.88523665772311216717857407774, −1.22175888953010540094546470927, 0,
1.22175888953010540094546470927, 1.88523665772311216717857407774, 2.88320061980396347599630187844, 3.98287875236199371416176310655, 4.63080403494839023271633987682, 5.61803826822241723304384507825, 5.88267173286614013533134098576, 6.85968241202142381330201694430, 7.51641777061424011766017254141