Properties

Label 2-89280-1.1-c1-0-58
Degree $2$
Conductor $89280$
Sign $1$
Analytic cond. $712.904$
Root an. cond. $26.7002$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 3·11-s + 4·13-s + 6·17-s + 19-s + 3·23-s + 25-s + 31-s + 35-s + 4·37-s + 43-s + 12·47-s − 6·49-s + 9·53-s − 3·55-s + 10·61-s − 4·65-s + 10·67-s − 15·71-s − 7·73-s − 3·77-s + 5·79-s − 6·83-s − 6·85-s − 15·89-s − 4·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.904·11-s + 1.10·13-s + 1.45·17-s + 0.229·19-s + 0.625·23-s + 1/5·25-s + 0.179·31-s + 0.169·35-s + 0.657·37-s + 0.152·43-s + 1.75·47-s − 6/7·49-s + 1.23·53-s − 0.404·55-s + 1.28·61-s − 0.496·65-s + 1.22·67-s − 1.78·71-s − 0.819·73-s − 0.341·77-s + 0.562·79-s − 0.658·83-s − 0.650·85-s − 1.58·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 89280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(89280\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(712.904\)
Root analytic conductor: \(26.7002\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 89280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.355742570\)
\(L(\frac12)\) \(\approx\) \(3.355742570\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
31 \( 1 - T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94590847913856, −13.40036984405540, −12.79268645433368, −12.44572328460261, −11.88331658566213, −11.33561381861593, −11.15046333999812, −10.23791359107491, −10.02221450945494, −9.342612904917263, −8.809075767937565, −8.445879522061161, −7.814217530113987, −7.198246787074151, −6.873075940384310, −6.082169052297953, −5.759590638744122, −5.167712475028388, −4.213647150302554, −4.007818933337258, −3.246721276249019, −2.924381850668159, −1.892320462107714, −1.071077285250344, −0.7219853824307759, 0.7219853824307759, 1.071077285250344, 1.892320462107714, 2.924381850668159, 3.246721276249019, 4.007818933337258, 4.213647150302554, 5.167712475028388, 5.759590638744122, 6.082169052297953, 6.873075940384310, 7.198246787074151, 7.814217530113987, 8.445879522061161, 8.809075767937565, 9.342612904917263, 10.02221450945494, 10.23791359107491, 11.15046333999812, 11.33561381861593, 11.88331658566213, 12.44572328460261, 12.79268645433368, 13.40036984405540, 13.94590847913856

Graph of the $Z$-function along the critical line