Properties

Label 2-912-1.1-c1-0-2
Degree $2$
Conductor $912$
Sign $1$
Analytic cond. $7.28235$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s − 4·13-s + 6·17-s − 19-s − 4·21-s + 6·23-s − 5·25-s − 27-s + 6·29-s − 2·31-s − 4·37-s + 4·39-s + 6·41-s + 4·43-s − 6·47-s + 9·49-s − 6·51-s + 6·53-s + 57-s + 12·59-s + 14·61-s + 4·63-s − 8·67-s − 6·69-s + 14·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s − 1.10·13-s + 1.45·17-s − 0.229·19-s − 0.872·21-s + 1.25·23-s − 25-s − 0.192·27-s + 1.11·29-s − 0.359·31-s − 0.657·37-s + 0.640·39-s + 0.937·41-s + 0.609·43-s − 0.875·47-s + 9/7·49-s − 0.840·51-s + 0.824·53-s + 0.132·57-s + 1.56·59-s + 1.79·61-s + 0.503·63-s − 0.977·67-s − 0.722·69-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(7.28235\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.542973644\)
\(L(\frac12)\) \(\approx\) \(1.542973644\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22249875858310914550450943665, −9.359231481850041434452307896895, −8.211124874872632719716882271254, −7.63111837112808582138120144993, −6.75095657741783063390476290272, −5.38776924769841264609355327167, −5.07485672472001477729499979724, −3.94709989510610133111766841641, −2.40790679424770113535591807077, −1.09773072794770812951577890272, 1.09773072794770812951577890272, 2.40790679424770113535591807077, 3.94709989510610133111766841641, 5.07485672472001477729499979724, 5.38776924769841264609355327167, 6.75095657741783063390476290272, 7.63111837112808582138120144993, 8.211124874872632719716882271254, 9.359231481850041434452307896895, 10.22249875858310914550450943665

Graph of the $Z$-function along the critical line