Properties

Label 2-9282-1.1-c1-0-79
Degree $2$
Conductor $9282$
Sign $1$
Analytic cond. $74.1171$
Root an. cond. $8.60913$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s − 7-s − 8-s + 9-s − 3·10-s + 12-s + 13-s + 14-s + 3·15-s + 16-s + 17-s − 18-s + 6·19-s + 3·20-s − 21-s + 4·23-s − 24-s + 4·25-s − 26-s + 27-s − 28-s − 5·29-s − 3·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.774·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 1.37·19-s + 0.670·20-s − 0.218·21-s + 0.834·23-s − 0.204·24-s + 4/5·25-s − 0.196·26-s + 0.192·27-s − 0.188·28-s − 0.928·29-s − 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9282\)    =    \(2 \cdot 3 \cdot 7 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(74.1171\)
Root analytic conductor: \(8.60913\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9282,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.722321467\)
\(L(\frac12)\) \(\approx\) \(2.722321467\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \)
11 \( 1 + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 + 13 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76526262572370164351628103956, −7.05601244261590775053658916568, −6.52793463919209635220403328645, −5.62878324644083624811438742878, −5.29323664414887359275222958151, −4.03730666191845187401185334751, −3.13546017853523036978628034530, −2.54862016430903188279373021562, −1.67496376787686394768634268150, −0.905485897273856916174751314634, 0.905485897273856916174751314634, 1.67496376787686394768634268150, 2.54862016430903188279373021562, 3.13546017853523036978628034530, 4.03730666191845187401185334751, 5.29323664414887359275222958151, 5.62878324644083624811438742878, 6.52793463919209635220403328645, 7.05601244261590775053658916568, 7.76526262572370164351628103956

Graph of the $Z$-function along the critical line