L(s) = 1 | + 2-s + 3-s + 4-s + 4·5-s + 6-s + 7-s + 8-s + 9-s + 4·10-s + 4·11-s + 12-s − 13-s + 14-s + 4·15-s + 16-s − 17-s + 18-s + 4·20-s + 21-s + 4·22-s + 4·23-s + 24-s + 11·25-s − 26-s + 27-s + 28-s + 4·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.26·10-s + 1.20·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s + 1.03·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.894·20-s + 0.218·21-s + 0.852·22-s + 0.834·23-s + 0.204·24-s + 11/5·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + 0.730·30-s + ⋯ |
Λ(s)=(=(9282s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9282s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
7.175784545 |
L(21) |
≈ |
7.175784545 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 7 | 1−T |
| 13 | 1+T |
| 17 | 1+T |
good | 5 | 1−4T+pT2 |
| 11 | 1−4T+pT2 |
| 19 | 1+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−4T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−10T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43431622225293476980256076857, −6.91485885108834120445811403430, −6.30002641476588263934450780620, −5.58752905368971229950122030594, −5.05216499506929163214392185002, −4.23639732023900214253770110943, −3.39905678903158564906056117992, −2.57135603277719859180202295969, −1.83970930829277438866929754733, −1.29631681266387487357538053133,
1.29631681266387487357538053133, 1.83970930829277438866929754733, 2.57135603277719859180202295969, 3.39905678903158564906056117992, 4.23639732023900214253770110943, 5.05216499506929163214392185002, 5.58752905368971229950122030594, 6.30002641476588263934450780620, 6.91485885108834120445811403430, 7.43431622225293476980256076857