Properties

Label 2-9282-1.1-c1-0-146
Degree $2$
Conductor $9282$
Sign $1$
Analytic cond. $74.1171$
Root an. cond. $8.60913$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 4·5-s + 6-s + 7-s + 8-s + 9-s + 4·10-s + 4·11-s + 12-s − 13-s + 14-s + 4·15-s + 16-s − 17-s + 18-s + 4·20-s + 21-s + 4·22-s + 4·23-s + 24-s + 11·25-s − 26-s + 27-s + 28-s + 4·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.26·10-s + 1.20·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s + 1.03·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.894·20-s + 0.218·21-s + 0.852·22-s + 0.834·23-s + 0.204·24-s + 11/5·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + 0.730·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9282\)    =    \(2 \cdot 3 \cdot 7 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(74.1171\)
Root analytic conductor: \(8.60913\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9282,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.175784545\)
\(L(\frac12)\) \(\approx\) \(7.175784545\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 10 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43431622225293476980256076857, −6.91485885108834120445811403430, −6.30002641476588263934450780620, −5.58752905368971229950122030594, −5.05216499506929163214392185002, −4.23639732023900214253770110943, −3.39905678903158564906056117992, −2.57135603277719859180202295969, −1.83970930829277438866929754733, −1.29631681266387487357538053133, 1.29631681266387487357538053133, 1.83970930829277438866929754733, 2.57135603277719859180202295969, 3.39905678903158564906056117992, 4.23639732023900214253770110943, 5.05216499506929163214392185002, 5.58752905368971229950122030594, 6.30002641476588263934450780620, 6.91485885108834120445811403430, 7.43431622225293476980256076857

Graph of the $Z$-function along the critical line