Properties

Label 2-312e2-1.1-c1-0-50
Degree $2$
Conductor $97344$
Sign $1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 17-s − 4·23-s + 4·25-s + 3·29-s + 8·31-s + 5·37-s − 3·41-s − 4·43-s + 8·47-s − 7·49-s − 13·53-s + 12·59-s − 15·61-s − 12·67-s − 8·71-s + 3·73-s − 4·79-s + 12·83-s + 3·85-s − 10·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.242·17-s − 0.834·23-s + 4/5·25-s + 0.557·29-s + 1.43·31-s + 0.821·37-s − 0.468·41-s − 0.609·43-s + 1.16·47-s − 49-s − 1.78·53-s + 1.56·59-s − 1.92·61-s − 1.46·67-s − 0.949·71-s + 0.351·73-s − 0.450·79-s + 1.31·83-s + 0.325·85-s − 1.05·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.256146327\)
\(L(\frac12)\) \(\approx\) \(3.256146327\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 13 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 15 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67386810724628, −13.45610031405698, −12.89755438176545, −12.33552413120533, −11.85081464342935, −11.40206278008542, −10.63233688310899, −10.25677731741939, −9.878257899636397, −9.413705410543603, −8.901817997869800, −8.280689290470427, −7.832923890057737, −7.208297664883781, −6.420250232006226, −6.194776690936109, −5.760758146849839, −4.984910110270338, −4.625499208593300, −3.914787723784986, −3.025842527170624, −2.701390117975779, −1.856105699466378, −1.459243476848939, −0.5581994724009074, 0.5581994724009074, 1.459243476848939, 1.856105699466378, 2.701390117975779, 3.025842527170624, 3.914787723784986, 4.625499208593300, 4.984910110270338, 5.760758146849839, 6.194776690936109, 6.420250232006226, 7.208297664883781, 7.832923890057737, 8.280689290470427, 8.901817997869800, 9.413705410543603, 9.878257899636397, 10.25677731741939, 10.63233688310899, 11.40206278008542, 11.85081464342935, 12.33552413120533, 12.89755438176545, 13.45610031405698, 13.67386810724628

Graph of the $Z$-function along the critical line