Properties

Label 4-26384-1.1-c1e2-0-4
Degree $4$
Conductor $26384$
Sign $1$
Analytic cond. $1.68226$
Root an. cond. $1.13886$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s − 5·7-s + 3·9-s − 2·13-s + 15·15-s − 8·17-s − 2·19-s + 15·21-s − 23-s + 10·25-s + 3·29-s + 3·31-s + 25·35-s − 37-s + 6·39-s − 41-s + 2·43-s − 15·45-s + 47-s + 8·49-s + 24·51-s − 7·53-s + 6·57-s + 59-s − 6·61-s − 15·63-s + ⋯
L(s)  = 1  − 1.73·3-s − 2.23·5-s − 1.88·7-s + 9-s − 0.554·13-s + 3.87·15-s − 1.94·17-s − 0.458·19-s + 3.27·21-s − 0.208·23-s + 2·25-s + 0.557·29-s + 0.538·31-s + 4.22·35-s − 0.164·37-s + 0.960·39-s − 0.156·41-s + 0.304·43-s − 2.23·45-s + 0.145·47-s + 8/7·49-s + 3.36·51-s − 0.961·53-s + 0.794·57-s + 0.130·59-s − 0.768·61-s − 1.88·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26384 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26384\)    =    \(2^{4} \cdot 17 \cdot 97\)
Sign: $1$
Analytic conductor: \(1.68226\)
Root analytic conductor: \(1.13886\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26384,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
17$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 7 T + p T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 12 T + p T^{2} ) \)
good3$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_4$ \( 1 + p T + 3 p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 5 T + 17 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$D_{4}$ \( 1 + 2 T + 20 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + T - 14 T^{2} + p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 3 T + p T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 3 T - 18 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + T + 27 T^{2} + p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + T + 20 T^{2} + p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 2 T - 50 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - T + 43 T^{2} - p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 7 T + 100 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - T + 72 T^{2} - p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 6 T + 24 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 12 T + 152 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T - 14 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 16 T + 200 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
79$C_4$ \( 1 + 4 T + 58 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 6 T + 88 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 9 T + 47 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.9585300603, −15.6172039990, −15.2785130970, −14.8269477845, −13.9128197342, −13.3091162839, −12.8759062541, −12.3407219062, −12.0848789043, −11.6576695087, −11.2159667822, −10.8717532608, −10.3034331237, −9.70977773476, −9.01166944544, −8.49144212845, −7.77944752612, −7.17004322956, −6.66070953100, −6.29713053712, −5.70184322571, −4.60360722797, −4.40001721139, −3.56799649235, −2.77973599304, 0, 0, 2.77973599304, 3.56799649235, 4.40001721139, 4.60360722797, 5.70184322571, 6.29713053712, 6.66070953100, 7.17004322956, 7.77944752612, 8.49144212845, 9.01166944544, 9.70977773476, 10.3034331237, 10.8717532608, 11.2159667822, 11.6576695087, 12.0848789043, 12.3407219062, 12.8759062541, 13.3091162839, 13.9128197342, 14.8269477845, 15.2785130970, 15.6172039990, 15.9585300603

Graph of the $Z$-function along the critical line