L(s) = 1 | − 4·5-s − 8·13-s + 8·17-s + 8·25-s + 4·29-s − 6·49-s + 12·53-s + 32·65-s − 32·85-s + 8·89-s + 101-s + 103-s + 107-s + 109-s + 113-s − 18·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 2.21·13-s + 1.94·17-s + 8/5·25-s + 0.742·29-s − 6/7·49-s + 1.64·53-s + 3.96·65-s − 3.47·85-s + 0.847·89-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 1.63·121-s − 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(331776s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(331776s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
331776
= 212⋅34
|
Sign: |
−1
|
Analytic conductor: |
21.1543 |
Root analytic conductor: |
2.14461 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 331776, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 7 | C22 | 1+6T2+p2T4 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 19 | C22 | 1+30T2+p2T4 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 31 | C22 | 1−10T2+p2T4 |
| 37 | C22 | 1−58T2+p2T4 |
| 41 | C22 | 1+p2T4 |
| 43 | C22 | 1+78T2+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1−12T+72T2−12pT3+p2T4 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C22 | 1−106T2+p2T4 |
| 67 | C22 | 1−66T2+p2T4 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C22 | 1−46T2+p2T4 |
| 79 | C22 | 1+150T2+p2T4 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 97 | C22 | 1−158T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.0203541864, −12.5381507908, −12.2728716993, −12.0227549840, −11.5731744716, −11.4646748129, −10.5503534597, −10.3404197273, −9.93493391536, −9.44709591973, −8.98557544958, −8.29618088815, −7.98383827929, −7.62472305759, −7.30663279167, −6.90167822816, −6.25156000501, −5.45662765031, −5.09031901593, −4.62603189313, −4.02491431772, −3.51276858227, −2.94539460426, −2.33558414449, −1.05860320122, 0,
1.05860320122, 2.33558414449, 2.94539460426, 3.51276858227, 4.02491431772, 4.62603189313, 5.09031901593, 5.45662765031, 6.25156000501, 6.90167822816, 7.30663279167, 7.62472305759, 7.98383827929, 8.29618088815, 8.98557544958, 9.44709591973, 9.93493391536, 10.3404197273, 10.5503534597, 11.4646748129, 11.5731744716, 12.0227549840, 12.2728716993, 12.5381507908, 13.0203541864