L(s) = 1 | − 4·5-s − 8·13-s + 8·17-s + 8·25-s + 4·29-s − 6·49-s + 12·53-s + 32·65-s − 32·85-s + 8·89-s + 101-s + 103-s + 107-s + 109-s + 113-s − 18·121-s − 20·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 2.21·13-s + 1.94·17-s + 8/5·25-s + 0.742·29-s − 6/7·49-s + 1.64·53-s + 3.96·65-s − 3.47·85-s + 0.847·89-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 1.63·121-s − 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
good | 5 | $C_2^2$ | \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 17 | $C_2^2$ | \( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 30 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 29 | $C_2^2$ | \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 - 58 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 + 78 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 61 | $C_2^2$ | \( 1 - 106 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2^2$ | \( 1 - 66 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2^2$ | \( 1 - 46 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 + 150 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2^2$ | \( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 - 158 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.0203541864, −12.5381507908, −12.2728716993, −12.0227549840, −11.5731744716, −11.4646748129, −10.5503534597, −10.3404197273, −9.93493391536, −9.44709591973, −8.98557544958, −8.29618088815, −7.98383827929, −7.62472305759, −7.30663279167, −6.90167822816, −6.25156000501, −5.45662765031, −5.09031901593, −4.62603189313, −4.02491431772, −3.51276858227, −2.94539460426, −2.33558414449, −1.05860320122, 0,
1.05860320122, 2.33558414449, 2.94539460426, 3.51276858227, 4.02491431772, 4.62603189313, 5.09031901593, 5.45662765031, 6.25156000501, 6.90167822816, 7.30663279167, 7.62472305759, 7.98383827929, 8.29618088815, 8.98557544958, 9.44709591973, 9.93493391536, 10.3404197273, 10.5503534597, 11.4646748129, 11.5731744716, 12.0227549840, 12.2728716993, 12.5381507908, 13.0203541864