Properties

Label 4-778752-1.1-c1e2-0-13
Degree $4$
Conductor $778752$
Sign $1$
Analytic cond. $49.6539$
Root an. cond. $2.65453$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 9-s − 12·17-s + 8·23-s − 10·25-s − 16·31-s + 4·47-s + 34·49-s − 8·63-s + 4·71-s − 20·73-s + 16·79-s + 81-s − 24·89-s − 4·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 96·119-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 3.02·7-s + 1/3·9-s − 2.91·17-s + 1.66·23-s − 2·25-s − 2.87·31-s + 0.583·47-s + 34/7·49-s − 1.00·63-s + 0.474·71-s − 2.34·73-s + 1.80·79-s + 1/9·81-s − 2.54·89-s − 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 8.80·119-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 778752 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 778752 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(778752\)    =    \(2^{9} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(49.6539\)
Root analytic conductor: \(2.65453\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 778752,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.9817377283, −12.2699770508, −12.2589845991, −11.3219642411, −11.1129058648, −10.7543074453, −10.3241583179, −9.68560567231, −9.48200090796, −9.23901367889, −8.89738790993, −8.46002418237, −7.59390007236, −7.10423169387, −6.97842775016, −6.43898703961, −6.27116899687, −5.57720303585, −5.24673574244, −4.25093555029, −3.96331013716, −3.60029656187, −2.81789710116, −2.52521406721, −1.67240281366, 0, 0, 1.67240281366, 2.52521406721, 2.81789710116, 3.60029656187, 3.96331013716, 4.25093555029, 5.24673574244, 5.57720303585, 6.27116899687, 6.43898703961, 6.97842775016, 7.10423169387, 7.59390007236, 8.46002418237, 8.89738790993, 9.23901367889, 9.48200090796, 9.68560567231, 10.3241583179, 10.7543074453, 11.1129058648, 11.3219642411, 12.2589845991, 12.2699770508, 12.9817377283

Graph of the $Z$-function along the critical line