L(s) = 1 | − 8·7-s + 9-s − 12·17-s + 8·23-s − 10·25-s − 16·31-s + 4·47-s + 34·49-s − 8·63-s + 4·71-s − 20·73-s + 16·79-s + 81-s − 24·89-s − 4·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 96·119-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | − 3.02·7-s + 1/3·9-s − 2.91·17-s + 1.66·23-s − 2·25-s − 2.87·31-s + 0.583·47-s + 34/7·49-s − 1.00·63-s + 0.474·71-s − 2.34·73-s + 1.80·79-s + 1/9·81-s − 2.54·89-s − 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 8.80·119-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(778752s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(778752s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
778752
= 29⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
49.6539 |
Root analytic conductor: |
2.65453 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 778752, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 13 | C1×C1 | (1−T)(1+T) |
good | 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1+4T+pT2)2 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−2T+pT2)2 |
| 53 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 59 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 61 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1−2T+pT2)2 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.9817377283, −12.2699770508, −12.2589845991, −11.3219642411, −11.1129058648, −10.7543074453, −10.3241583179, −9.68560567231, −9.48200090796, −9.23901367889, −8.89738790993, −8.46002418237, −7.59390007236, −7.10423169387, −6.97842775016, −6.43898703961, −6.27116899687, −5.57720303585, −5.24673574244, −4.25093555029, −3.96331013716, −3.60029656187, −2.81789710116, −2.52521406721, −1.67240281366, 0, 0,
1.67240281366, 2.52521406721, 2.81789710116, 3.60029656187, 3.96331013716, 4.25093555029, 5.24673574244, 5.57720303585, 6.27116899687, 6.43898703961, 6.97842775016, 7.10423169387, 7.59390007236, 8.46002418237, 8.89738790993, 9.23901367889, 9.48200090796, 9.68560567231, 10.3241583179, 10.7543074453, 11.1129058648, 11.3219642411, 12.2589845991, 12.2699770508, 12.9817377283