Properties

Label 4-834-1.1-c1e2-0-0
Degree $4$
Conductor $834$
Sign $1$
Analytic cond. $0.0531765$
Root an. cond. $0.480208$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s − 5-s − 3·7-s + 2·8-s − 2·9-s + 5·11-s + 12-s − 3·13-s + 15-s + 16-s − 2·17-s + 20-s + 3·21-s + 8·23-s − 2·24-s + 25-s + 2·27-s + 3·28-s + 29-s − 31-s − 4·32-s − 5·33-s + 3·35-s + 2·36-s − 4·37-s + 3·39-s + ⋯
L(s)  = 1  − 0.577·3-s − 1/2·4-s − 0.447·5-s − 1.13·7-s + 0.707·8-s − 2/3·9-s + 1.50·11-s + 0.288·12-s − 0.832·13-s + 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.223·20-s + 0.654·21-s + 1.66·23-s − 0.408·24-s + 1/5·25-s + 0.384·27-s + 0.566·28-s + 0.185·29-s − 0.179·31-s − 0.707·32-s − 0.870·33-s + 0.507·35-s + 1/3·36-s − 0.657·37-s + 0.480·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 834 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 834 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(834\)    =    \(2 \cdot 3 \cdot 139\)
Sign: $1$
Analytic conductor: \(0.0531765\)
Root analytic conductor: \(0.480208\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 834,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3676098807\)
\(L(\frac12)\) \(\approx\) \(0.3676098807\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + T + p T^{2} ) \)
3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
139$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 12 T + p T^{2} ) \)
good5$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 3 T + 6 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 5 T + 18 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 3 T + 12 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 2 T - 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
29$D_{4}$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + T + 14 T^{2} + p T^{3} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$D_{4}$ \( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 2 T + 46 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 2 T + 62 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$D_{4}$ \( 1 + 15 T + 186 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 3 T + 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$D_{4}$ \( 1 - 9 T + 30 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 7 T + 18 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 11 T + 112 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5498310312, −19.3435842630, −18.8747556104, −17.9344929515, −17.1949405684, −17.0187543082, −16.5276879710, −15.8754941792, −14.8988880324, −14.6818567971, −13.6718238204, −13.3213654465, −12.3808780905, −12.0170264206, −11.2183848234, −10.6046936283, −9.66599640236, −9.11838420690, −8.39429356341, −7.08082152627, −6.71343196046, −5.52246161490, −4.53472704076, −3.38079152731, 3.38079152731, 4.53472704076, 5.52246161490, 6.71343196046, 7.08082152627, 8.39429356341, 9.11838420690, 9.66599640236, 10.6046936283, 11.2183848234, 12.0170264206, 12.3808780905, 13.3213654465, 13.6718238204, 14.6818567971, 14.8988880324, 15.8754941792, 16.5276879710, 17.0187543082, 17.1949405684, 17.9344929515, 18.8747556104, 19.3435842630, 19.5498310312

Graph of the $Z$-function along the critical line