L(s) = 1 | − 3-s − 4-s − 5-s − 3·7-s + 2·8-s − 2·9-s + 5·11-s + 12-s − 3·13-s + 15-s + 16-s − 2·17-s + 20-s + 3·21-s + 8·23-s − 2·24-s + 25-s + 2·27-s + 3·28-s + 29-s − 31-s − 4·32-s − 5·33-s + 3·35-s + 2·36-s − 4·37-s + 3·39-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s − 0.447·5-s − 1.13·7-s + 0.707·8-s − 2/3·9-s + 1.50·11-s + 0.288·12-s − 0.832·13-s + 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.223·20-s + 0.654·21-s + 1.66·23-s − 0.408·24-s + 1/5·25-s + 0.384·27-s + 0.566·28-s + 0.185·29-s − 0.179·31-s − 0.707·32-s − 0.870·33-s + 0.507·35-s + 1/3·36-s − 0.657·37-s + 0.480·39-s + ⋯ |
Λ(s)=(=(834s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(834s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
834
= 2⋅3⋅139
|
Sign: |
1
|
Analytic conductor: |
0.0531765 |
Root analytic conductor: |
0.480208 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 834, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3676098807 |
L(21) |
≈ |
0.3676098807 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C2 | (1−T)(1+T+pT2) |
| 3 | C1×C2 | (1+T)(1+pT2) |
| 139 | C1×C2 | (1−T)(1−12T+pT2) |
good | 5 | D4 | 1+T+pT3+p2T4 |
| 7 | D4 | 1+3T+6T2+3pT3+p2T4 |
| 11 | D4 | 1−5T+18T2−5pT3+p2T4 |
| 13 | D4 | 1+3T+12T2+3pT3+p2T4 |
| 17 | D4 | 1+2T−6T2+2pT3+p2T4 |
| 19 | C22 | 1−10T2+p2T4 |
| 23 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 29 | D4 | 1−T−12T2−pT3+p2T4 |
| 31 | D4 | 1+T+14T2+pT3+p2T4 |
| 37 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 41 | D4 | 1+8T+30T2+8pT3+p2T4 |
| 43 | D4 | 1+2T+46T2+2pT3+p2T4 |
| 47 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 53 | C22 | 1−58T2+p2T4 |
| 59 | D4 | 1−2T+62T2−2pT3+p2T4 |
| 61 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 67 | D4 | 1+15T+186T2+15pT3+p2T4 |
| 71 | D4 | 1−3T+70T2−3pT3+p2T4 |
| 73 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
| 79 | D4 | 1−9T+30T2−9pT3+p2T4 |
| 83 | D4 | 1−7T+18T2−7pT3+p2T4 |
| 89 | D4 | 1+11T+112T2+11pT3+p2T4 |
| 97 | C2×C2 | (1−10T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.5498310312, −19.3435842630, −18.8747556104, −17.9344929515, −17.1949405684, −17.0187543082, −16.5276879710, −15.8754941792, −14.8988880324, −14.6818567971, −13.6718238204, −13.3213654465, −12.3808780905, −12.0170264206, −11.2183848234, −10.6046936283, −9.66599640236, −9.11838420690, −8.39429356341, −7.08082152627, −6.71343196046, −5.52246161490, −4.53472704076, −3.38079152731,
3.38079152731, 4.53472704076, 5.52246161490, 6.71343196046, 7.08082152627, 8.39429356341, 9.11838420690, 9.66599640236, 10.6046936283, 11.2183848234, 12.0170264206, 12.3808780905, 13.3213654465, 13.6718238204, 14.6818567971, 14.8988880324, 15.8754941792, 16.5276879710, 17.0187543082, 17.1949405684, 17.9344929515, 18.8747556104, 19.3435842630, 19.5498310312