Properties

Label 4-924800-1.1-c1e2-0-8
Degree $4$
Conductor $924800$
Sign $1$
Analytic cond. $58.9660$
Root an. cond. $2.77108$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s + 4·13-s + 2·17-s + 25-s − 2·49-s + 12·53-s + 27·81-s + 12·89-s − 12·101-s + 24·117-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 12·153-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 2·9-s + 1.10·13-s + 0.485·17-s + 1/5·25-s − 2/7·49-s + 1.64·53-s + 3·81-s + 1.27·89-s − 1.19·101-s + 2.21·117-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 924800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 924800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(924800\)    =    \(2^{7} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(58.9660\)
Root analytic conductor: \(2.77108\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 924800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.907409369\)
\(L(\frac12)\) \(\approx\) \(2.907409369\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
17$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.102474755417312482751636017727, −7.63480726341069678342063880921, −7.31418368250277689619278754952, −6.90489865960865564603697637591, −6.35598375216417660582625888186, −6.13116133525925096259287872344, −5.35017836730591472742155893237, −5.01749996472848131933830271333, −4.40598427015520727142670462165, −3.87831858695205618704850596461, −3.69911802761298094032213517943, −2.89831831585997321487363096349, −2.11003624829916870751595686170, −1.44917871497857968747448625423, −0.909665636801792588194732483250, 0.909665636801792588194732483250, 1.44917871497857968747448625423, 2.11003624829916870751595686170, 2.89831831585997321487363096349, 3.69911802761298094032213517943, 3.87831858695205618704850596461, 4.40598427015520727142670462165, 5.01749996472848131933830271333, 5.35017836730591472742155893237, 6.13116133525925096259287872344, 6.35598375216417660582625888186, 6.90489865960865564603697637591, 7.31418368250277689619278754952, 7.63480726341069678342063880921, 8.102474755417312482751636017727

Graph of the $Z$-function along the critical line