L(s) = 1 | + 6·9-s + 4·13-s + 2·17-s + 25-s − 2·49-s + 12·53-s + 27·81-s + 12·89-s − 12·101-s + 24·117-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 12·153-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2·9-s + 1.10·13-s + 0.485·17-s + 1/5·25-s − 2/7·49-s + 1.64·53-s + 3·81-s + 1.27·89-s − 1.19·101-s + 2.21·117-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(924800s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(924800s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
924800
= 27⋅52⋅172
|
Sign: |
1
|
Analytic conductor: |
58.9660 |
Root analytic conductor: |
2.77108 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 924800, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.907409369 |
L(21) |
≈ |
2.907409369 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
| 17 | C2 | 1−2T+pT2 |
good | 3 | C2 | (1−pT2)2 |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C22 | 1+2T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1−pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1−pT2)2 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−14T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.102474755417312482751636017727, −7.63480726341069678342063880921, −7.31418368250277689619278754952, −6.90489865960865564603697637591, −6.35598375216417660582625888186, −6.13116133525925096259287872344, −5.35017836730591472742155893237, −5.01749996472848131933830271333, −4.40598427015520727142670462165, −3.87831858695205618704850596461, −3.69911802761298094032213517943, −2.89831831585997321487363096349, −2.11003624829916870751595686170, −1.44917871497857968747448625423, −0.909665636801792588194732483250,
0.909665636801792588194732483250, 1.44917871497857968747448625423, 2.11003624829916870751595686170, 2.89831831585997321487363096349, 3.69911802761298094032213517943, 3.87831858695205618704850596461, 4.40598427015520727142670462165, 5.01749996472848131933830271333, 5.35017836730591472742155893237, 6.13116133525925096259287872344, 6.35598375216417660582625888186, 6.90489865960865564603697637591, 7.31418368250277689619278754952, 7.63480726341069678342063880921, 8.102474755417312482751636017727