L(s) = 1 | − 2·2-s − 4-s + 8·8-s + 10·11-s − 7·16-s − 20·22-s + 2·23-s − 25-s − 4·29-s − 14·32-s + 6·37-s + 12·43-s − 10·44-s − 4·46-s + 2·50-s − 16·53-s + 8·58-s + 35·64-s − 28·67-s − 14·71-s − 12·74-s − 20·79-s − 24·86-s + 80·88-s − 2·92-s + 100-s + 32·106-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1/2·4-s + 2.82·8-s + 3.01·11-s − 7/4·16-s − 4.26·22-s + 0.417·23-s − 1/5·25-s − 0.742·29-s − 2.47·32-s + 0.986·37-s + 1.82·43-s − 1.50·44-s − 0.589·46-s + 0.282·50-s − 2.19·53-s + 1.05·58-s + 35/8·64-s − 3.42·67-s − 1.66·71-s − 1.39·74-s − 2.25·79-s − 2.58·86-s + 8.52·88-s − 0.208·92-s + 1/10·100-s + 3.10·106-s + ⋯ |
Λ(s)=(=(1750329s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1750329s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1750329
= 36⋅74
|
Sign: |
−1
|
Analytic conductor: |
111.602 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1750329, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | | 1 |
good | 2 | C2 | (1+T+pT2)2 |
| 5 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−5T+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 23 | C2 | (1−T+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 43 | C2 | (1−6T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1+8T+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1+14T+pT2)2 |
| 71 | C2 | (1+7T+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 97 | C2 | (1−12T+pT2)(1+12T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.59315018372019842769294095239, −7.28342071225309798898505652310, −7.13167564560012152294416600100, −6.34215171511087571525667957813, −5.96735414787932054483964871891, −5.63752173484997695290532171122, −4.60087511347345218102319658198, −4.47191624657260288271626711721, −4.22351345808096997888083312699, −3.59632548449757607506915649618, −3.08850093557224289960924465680, −1.92610841189085090066739675799, −1.32164798123200269811823069632, −1.12292208190814267208777122415, 0,
1.12292208190814267208777122415, 1.32164798123200269811823069632, 1.92610841189085090066739675799, 3.08850093557224289960924465680, 3.59632548449757607506915649618, 4.22351345808096997888083312699, 4.47191624657260288271626711721, 4.60087511347345218102319658198, 5.63752173484997695290532171122, 5.96735414787932054483964871891, 6.34215171511087571525667957813, 7.13167564560012152294416600100, 7.28342071225309798898505652310, 7.59315018372019842769294095239