L(s) = 1 | + 2-s − 4-s − 3·8-s − 9-s + 2·11-s − 16-s − 18-s + 2·22-s + 2·23-s − 4·25-s − 8·29-s + 5·32-s + 36-s − 2·44-s + 2·46-s − 4·50-s + 8·53-s − 8·58-s + 7·64-s − 12·67-s − 18·71-s + 3·72-s − 4·79-s + 81-s − 6·88-s − 2·92-s − 2·99-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1/3·9-s + 0.603·11-s − 1/4·16-s − 0.235·18-s + 0.426·22-s + 0.417·23-s − 4/5·25-s − 1.48·29-s + 0.883·32-s + 1/6·36-s − 0.301·44-s + 0.294·46-s − 0.565·50-s + 1.09·53-s − 1.05·58-s + 7/8·64-s − 1.46·67-s − 2.13·71-s + 0.353·72-s − 0.450·79-s + 1/9·81-s − 0.639·88-s − 0.208·92-s − 0.201·99-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(345744s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
−1
|
Analytic conductor: |
22.0449 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 345744, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | C2 | 1+T2 |
| 7 | | 1 |
good | 5 | C22 | 1+4T2+p2T4 |
| 11 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | C22 | 1+20T2+p2T4 |
| 19 | C22 | 1+14T2+p2T4 |
| 23 | C2×C2 | (1−2T+pT2)(1+pT2) |
| 29 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C22 | 1−20T2+p2T4 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2×C2 | (1−14T+pT2)(1+6T+pT2) |
| 59 | C22 | 1+14T2+p2T4 |
| 61 | C22 | 1+16T2+p2T4 |
| 67 | C2×C2 | (1−4T+pT2)(1+16T+pT2) |
| 71 | C2×C2 | (1+8T+pT2)(1+10T+pT2) |
| 73 | C22 | 1−40T2+p2T4 |
| 79 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 83 | C22 | 1+26T2+p2T4 |
| 89 | C22 | 1+156T2+p2T4 |
| 97 | C22 | 1+40T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.739669822998969445809140863235, −8.034516887502443310649335442709, −7.52685283860693278740387088025, −7.15143906922658593640837830289, −6.45585929004488164739050655816, −5.99444197952005469662508385604, −5.64425540196005984867157019856, −5.16050516489234500565730154860, −4.52358344101759891331149131012, −4.06963482182445630773446579280, −3.58887616485273778765261206279, −3.02437764916907353123409236856, −2.28485132977309640466176859544, −1.33358386294238772488720373779, 0,
1.33358386294238772488720373779, 2.28485132977309640466176859544, 3.02437764916907353123409236856, 3.58887616485273778765261206279, 4.06963482182445630773446579280, 4.52358344101759891331149131012, 5.16050516489234500565730154860, 5.64425540196005984867157019856, 5.99444197952005469662508385604, 6.45585929004488164739050655816, 7.15143906922658593640837830289, 7.52685283860693278740387088025, 8.034516887502443310649335442709, 8.739669822998969445809140863235