Properties

Label 4-1752192-1.1-c1e2-0-7
Degree $4$
Conductor $1752192$
Sign $1$
Analytic cond. $111.721$
Root an. cond. $3.25112$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 8·11-s + 16-s − 12·19-s + 8·22-s − 6·25-s − 32-s + 12·38-s + 12·41-s − 16·43-s − 8·44-s − 10·49-s + 6·50-s + 8·59-s + 64-s − 4·67-s + 28·73-s − 12·76-s − 12·82-s − 24·83-s + 16·86-s + 8·88-s − 12·89-s − 20·97-s + 10·98-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 2.41·11-s + 1/4·16-s − 2.75·19-s + 1.70·22-s − 6/5·25-s − 0.176·32-s + 1.94·38-s + 1.87·41-s − 2.43·43-s − 1.20·44-s − 1.42·49-s + 0.848·50-s + 1.04·59-s + 1/8·64-s − 0.488·67-s + 3.27·73-s − 1.37·76-s − 1.32·82-s − 2.63·83-s + 1.72·86-s + 0.852·88-s − 1.27·89-s − 2.03·97-s + 1.01·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1752192 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1752192 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1752192\)    =    \(2^{7} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(111.721\)
Root analytic conductor: \(3.25112\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1752192,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
13$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76516545555292037952264969735, −6.93707785293490008685942511031, −6.54658570849644716266634653386, −6.31902631650893558385157451977, −5.59584593532556316161391417712, −5.29958688295089777719730657827, −4.89846206181494562517735323880, −4.04504924809123623904528509602, −3.99394475360161838020150844401, −2.94012618851587332451134020886, −2.57523735650192716532994366231, −2.16841436964911272483029187855, −1.50688699187961671245243796764, 0, 0, 1.50688699187961671245243796764, 2.16841436964911272483029187855, 2.57523735650192716532994366231, 2.94012618851587332451134020886, 3.99394475360161838020150844401, 4.04504924809123623904528509602, 4.89846206181494562517735323880, 5.29958688295089777719730657827, 5.59584593532556316161391417712, 6.31902631650893558385157451977, 6.54658570849644716266634653386, 6.93707785293490008685942511031, 7.76516545555292037952264969735

Graph of the $Z$-function along the critical line