L(s) = 1 | + (16 + 16i)2-s + (57 − 57i)3-s + 512i·4-s + (2.92e3 + 1.10e3i)5-s + 1.82e3·6-s + (6.95e3 + 6.95e3i)7-s + (−8.19e3 + 8.19e3i)8-s + 5.25e4i·9-s + (2.92e4 + 6.44e4i)10-s + 7.52e4·11-s + (2.91e4 + 2.91e4i)12-s + (1.09e5 − 1.09e5i)13-s + 2.22e5i·14-s + (2.29e5 − 1.04e5i)15-s − 2.62e5·16-s + (−1.52e6 − 1.52e6i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (0.234 − 0.234i)3-s + 0.5i·4-s + (0.936 + 0.352i)5-s + 0.234·6-s + (0.413 + 0.413i)7-s + (−0.250 + 0.250i)8-s + 0.889i·9-s + (0.292 + 0.644i)10-s + 0.467·11-s + (0.117 + 0.117i)12-s + (0.295 − 0.295i)13-s + 0.413i·14-s + (0.302 − 0.136i)15-s − 0.250·16-s + (−1.07 − 1.07i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{11}{2})\) |
\(\approx\) |
\(2.22479 + 1.18563i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.22479 + 1.18563i\) |
\(L(6)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-16 - 16i)T \) |
| 5 | \( 1 + (-2.92e3 - 1.10e3i)T \) |
good | 3 | \( 1 + (-57 + 57i)T - 5.90e4iT^{2} \) |
| 7 | \( 1 + (-6.95e3 - 6.95e3i)T + 2.82e8iT^{2} \) |
| 11 | \( 1 - 7.52e4T + 2.59e10T^{2} \) |
| 13 | \( 1 + (-1.09e5 + 1.09e5i)T - 1.37e11iT^{2} \) |
| 17 | \( 1 + (1.52e6 + 1.52e6i)T + 2.01e12iT^{2} \) |
| 19 | \( 1 + 4.03e6iT - 6.13e12T^{2} \) |
| 23 | \( 1 + (7.12e5 - 7.12e5i)T - 4.14e13iT^{2} \) |
| 29 | \( 1 - 4.46e5iT - 4.20e14T^{2} \) |
| 31 | \( 1 + 2.90e7T + 8.19e14T^{2} \) |
| 37 | \( 1 + (9.11e5 + 9.11e5i)T + 4.80e15iT^{2} \) |
| 41 | \( 1 + 1.63e8T + 1.34e16T^{2} \) |
| 43 | \( 1 + (-1.18e8 + 1.18e8i)T - 2.16e16iT^{2} \) |
| 47 | \( 1 + (-2.76e8 - 2.76e8i)T + 5.25e16iT^{2} \) |
| 53 | \( 1 + (-3.08e8 + 3.08e8i)T - 1.74e17iT^{2} \) |
| 59 | \( 1 + 9.40e8iT - 5.11e17T^{2} \) |
| 61 | \( 1 + 1.35e9T + 7.13e17T^{2} \) |
| 67 | \( 1 + (-8.53e8 - 8.53e8i)T + 1.82e18iT^{2} \) |
| 71 | \( 1 - 2.82e9T + 3.25e18T^{2} \) |
| 73 | \( 1 + (2.75e9 - 2.75e9i)T - 4.29e18iT^{2} \) |
| 79 | \( 1 - 3.32e9iT - 9.46e18T^{2} \) |
| 83 | \( 1 + (-1.34e9 + 1.34e9i)T - 1.55e19iT^{2} \) |
| 89 | \( 1 + 2.66e9iT - 3.11e19T^{2} \) |
| 97 | \( 1 + (5.26e8 + 5.26e8i)T + 7.37e19iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.39634524542139402580114584633, −17.26944608037313628008584437461, −15.60467157306474261588579157493, −14.11076234856294098963190874907, −13.21320892687923712486291325465, −11.14695353300958144043870223346, −8.948689522200678052404287025130, −6.98215040703774643879951698499, −5.16464369333576426631803464446, −2.37842261372478713179066510225,
1.58099731909072381970786310110, 4.02374903709250392214806328264, 6.13260724991758774708242829790, 8.987284424356253584939278611471, 10.48187388561386472360744690374, 12.32121513427175594119994418304, 13.78833395774184528742258799633, 14.91836961386299830575491805189, 16.89361649096381474158077676476, 18.24201118133087810164147784822