Properties

Label 2-10-1.1-c11-0-1
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $7.68343$
Root an. cond. $2.77190$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s − 141.·3-s + 1.02e3·4-s + 3.12e3·5-s − 4.53e3·6-s + 8.55e4·7-s + 3.27e4·8-s − 1.57e5·9-s + 1.00e5·10-s + 7.67e5·11-s − 1.45e5·12-s + 2.20e5·13-s + 2.73e6·14-s − 4.42e5·15-s + 1.04e6·16-s − 9.30e5·17-s − 5.02e6·18-s − 1.77e7·19-s + 3.20e6·20-s − 1.21e7·21-s + 2.45e7·22-s − 3.99e7·23-s − 4.64e6·24-s + 9.76e6·25-s + 7.07e6·26-s + 4.73e7·27-s + 8.76e7·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.336·3-s + 0.5·4-s + 0.447·5-s − 0.238·6-s + 1.92·7-s + 0.353·8-s − 0.886·9-s + 0.316·10-s + 1.43·11-s − 0.168·12-s + 0.165·13-s + 1.36·14-s − 0.150·15-s + 0.250·16-s − 0.158·17-s − 0.626·18-s − 1.64·19-s + 0.223·20-s − 0.648·21-s + 1.01·22-s − 1.29·23-s − 0.119·24-s + 0.199·25-s + 0.116·26-s + 0.635·27-s + 0.962·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(7.68343\)
Root analytic conductor: \(2.77190\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(2.711734219\)
\(L(\frac12)\) \(\approx\) \(2.711734219\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 32T \)
5 \( 1 - 3.12e3T \)
good3 \( 1 + 141.T + 1.77e5T^{2} \)
7 \( 1 - 8.55e4T + 1.97e9T^{2} \)
11 \( 1 - 7.67e5T + 2.85e11T^{2} \)
13 \( 1 - 2.20e5T + 1.79e12T^{2} \)
17 \( 1 + 9.30e5T + 3.42e13T^{2} \)
19 \( 1 + 1.77e7T + 1.16e14T^{2} \)
23 \( 1 + 3.99e7T + 9.52e14T^{2} \)
29 \( 1 - 7.68e7T + 1.22e16T^{2} \)
31 \( 1 + 2.96e7T + 2.54e16T^{2} \)
37 \( 1 - 5.40e7T + 1.77e17T^{2} \)
41 \( 1 - 1.26e8T + 5.50e17T^{2} \)
43 \( 1 + 2.88e8T + 9.29e17T^{2} \)
47 \( 1 + 1.57e9T + 2.47e18T^{2} \)
53 \( 1 + 4.09e9T + 9.26e18T^{2} \)
59 \( 1 - 3.77e9T + 3.01e19T^{2} \)
61 \( 1 + 9.64e9T + 4.35e19T^{2} \)
67 \( 1 + 1.63e10T + 1.22e20T^{2} \)
71 \( 1 - 1.03e10T + 2.31e20T^{2} \)
73 \( 1 - 4.27e9T + 3.13e20T^{2} \)
79 \( 1 + 1.96e10T + 7.47e20T^{2} \)
83 \( 1 + 1.35e10T + 1.28e21T^{2} \)
89 \( 1 - 2.25e10T + 2.77e21T^{2} \)
97 \( 1 + 1.08e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.77736466117883358148823341509, −16.93640620326652268169203828394, −14.75357021979853328790989824818, −14.07432227422831341256009847652, −11.97272180346616251378113402968, −10.97230457851962835483947881259, −8.436532141699225614016171337797, −6.15015776511802460800897197579, −4.50776396697386038857954667873, −1.77322034821727295348141717469, 1.77322034821727295348141717469, 4.50776396697386038857954667873, 6.15015776511802460800897197579, 8.436532141699225614016171337797, 10.97230457851962835483947881259, 11.97272180346616251378113402968, 14.07432227422831341256009847652, 14.75357021979853328790989824818, 16.93640620326652268169203828394, 17.77736466117883358148823341509

Graph of the $Z$-function along the critical line