Properties

Label 2-10-1.1-c21-0-2
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $27.9477$
Root an. cond. $5.28656$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.02e3·2-s − 1.74e5·3-s + 1.04e6·4-s − 9.76e6·5-s + 1.78e8·6-s − 9.60e8·7-s − 1.07e9·8-s + 2.00e10·9-s + 1.00e10·10-s + 8.54e10·11-s − 1.83e11·12-s + 9.74e11·13-s + 9.83e11·14-s + 1.70e12·15-s + 1.09e12·16-s − 1.17e13·17-s − 2.05e13·18-s + 1.41e13·19-s − 1.02e13·20-s + 1.67e14·21-s − 8.75e13·22-s − 2.65e13·23-s + 1.87e14·24-s + 9.53e13·25-s − 9.97e14·26-s − 1.67e15·27-s − 1.00e15·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.70·3-s + 0.5·4-s − 0.447·5-s + 1.20·6-s − 1.28·7-s − 0.353·8-s + 1.91·9-s + 0.316·10-s + 0.993·11-s − 0.853·12-s + 1.96·13-s + 0.908·14-s + 0.763·15-s + 0.250·16-s − 1.40·17-s − 1.35·18-s + 0.528·19-s − 0.223·20-s + 2.19·21-s − 0.702·22-s − 0.133·23-s + 0.603·24-s + 0.199·25-s − 1.38·26-s − 1.56·27-s − 0.642·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(27.9477\)
Root analytic conductor: \(5.28656\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :21/2),\ -1)\)

Particular Values

\(L(11)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.02e3T \)
5 \( 1 + 9.76e6T \)
good3 \( 1 + 1.74e5T + 1.04e10T^{2} \)
7 \( 1 + 9.60e8T + 5.58e17T^{2} \)
11 \( 1 - 8.54e10T + 7.40e21T^{2} \)
13 \( 1 - 9.74e11T + 2.47e23T^{2} \)
17 \( 1 + 1.17e13T + 6.90e25T^{2} \)
19 \( 1 - 1.41e13T + 7.14e26T^{2} \)
23 \( 1 + 2.65e13T + 3.94e28T^{2} \)
29 \( 1 - 1.45e15T + 5.13e30T^{2} \)
31 \( 1 + 7.63e15T + 2.08e31T^{2} \)
37 \( 1 - 1.09e16T + 8.55e32T^{2} \)
41 \( 1 - 7.93e16T + 7.38e33T^{2} \)
43 \( 1 + 8.36e16T + 2.00e34T^{2} \)
47 \( 1 - 3.57e17T + 1.30e35T^{2} \)
53 \( 1 + 8.17e17T + 1.62e36T^{2} \)
59 \( 1 - 8.21e17T + 1.54e37T^{2} \)
61 \( 1 - 4.53e18T + 3.10e37T^{2} \)
67 \( 1 - 8.02e18T + 2.22e38T^{2} \)
71 \( 1 + 5.25e19T + 7.52e38T^{2} \)
73 \( 1 - 9.28e18T + 1.34e39T^{2} \)
79 \( 1 - 1.08e19T + 7.08e39T^{2} \)
83 \( 1 + 4.79e19T + 1.99e40T^{2} \)
89 \( 1 - 2.35e20T + 8.65e40T^{2} \)
97 \( 1 - 7.25e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.85839538305185702401666177148, −12.99776444958657970857434160675, −11.61865778298513851339169783129, −10.73804741737209801406969588700, −9.118563010103317364979725732703, −6.79751258135651795703609932208, −6.04213711772108342139157952173, −3.86191063965913166125107408071, −1.11642112105821876100684601202, 0, 1.11642112105821876100684601202, 3.86191063965913166125107408071, 6.04213711772108342139157952173, 6.79751258135651795703609932208, 9.118563010103317364979725732703, 10.73804741737209801406969588700, 11.61865778298513851339169783129, 12.99776444958657970857434160675, 15.85839538305185702401666177148

Graph of the $Z$-function along the critical line