Properties

Label 2-10-1.1-c21-0-1
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $27.9477$
Root an. cond. $5.28656$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.02e3·2-s − 1.14e5·3-s + 1.04e6·4-s − 9.76e6·5-s − 1.17e8·6-s − 2.03e8·7-s + 1.07e9·8-s + 2.72e9·9-s − 1.00e10·10-s − 4.40e10·11-s − 1.20e11·12-s − 1.80e11·13-s − 2.08e11·14-s + 1.12e12·15-s + 1.09e12·16-s + 1.29e13·17-s + 2.79e12·18-s + 3.50e13·19-s − 1.02e13·20-s + 2.34e13·21-s − 4.50e13·22-s − 1.00e14·23-s − 1.23e14·24-s + 9.53e13·25-s − 1.85e14·26-s + 8.87e14·27-s − 2.13e14·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.12·3-s + 0.5·4-s − 0.447·5-s − 0.794·6-s − 0.272·7-s + 0.353·8-s + 0.260·9-s − 0.316·10-s − 0.511·11-s − 0.561·12-s − 0.363·13-s − 0.192·14-s + 0.502·15-s + 0.250·16-s + 1.55·17-s + 0.184·18-s + 1.31·19-s − 0.223·20-s + 0.306·21-s − 0.361·22-s − 0.505·23-s − 0.397·24-s + 0.199·25-s − 0.257·26-s + 0.829·27-s − 0.136·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(27.9477\)
Root analytic conductor: \(5.28656\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(1.681758740\)
\(L(\frac12)\) \(\approx\) \(1.681758740\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.02e3T \)
5 \( 1 + 9.76e6T \)
good3 \( 1 + 1.14e5T + 1.04e10T^{2} \)
7 \( 1 + 2.03e8T + 5.58e17T^{2} \)
11 \( 1 + 4.40e10T + 7.40e21T^{2} \)
13 \( 1 + 1.80e11T + 2.47e23T^{2} \)
17 \( 1 - 1.29e13T + 6.90e25T^{2} \)
19 \( 1 - 3.50e13T + 7.14e26T^{2} \)
23 \( 1 + 1.00e14T + 3.94e28T^{2} \)
29 \( 1 - 2.65e15T + 5.13e30T^{2} \)
31 \( 1 - 1.12e15T + 2.08e31T^{2} \)
37 \( 1 - 2.62e16T + 8.55e32T^{2} \)
41 \( 1 + 2.80e16T + 7.38e33T^{2} \)
43 \( 1 - 1.48e17T + 2.00e34T^{2} \)
47 \( 1 + 9.51e16T + 1.30e35T^{2} \)
53 \( 1 - 1.03e18T + 1.62e36T^{2} \)
59 \( 1 + 1.03e18T + 1.54e37T^{2} \)
61 \( 1 + 8.22e18T + 3.10e37T^{2} \)
67 \( 1 + 1.74e19T + 2.22e38T^{2} \)
71 \( 1 - 2.67e19T + 7.52e38T^{2} \)
73 \( 1 - 5.60e19T + 1.34e39T^{2} \)
79 \( 1 + 4.33e19T + 7.08e39T^{2} \)
83 \( 1 + 2.59e20T + 1.99e40T^{2} \)
89 \( 1 - 5.09e20T + 8.65e40T^{2} \)
97 \( 1 - 6.58e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.80904391050943419199518934072, −14.16960218827182429796380241887, −12.44505953192757271287888041570, −11.61423277013174624547472955210, −10.16505969652227915066826270464, −7.63250874819259180382847280239, −6.01437335541878318939133969791, −4.89552429151551962596653638970, −3.10198697336722944316667572319, −0.794842427459680101765561788939, 0.794842427459680101765561788939, 3.10198697336722944316667572319, 4.89552429151551962596653638970, 6.01437335541878318939133969791, 7.63250874819259180382847280239, 10.16505969652227915066826270464, 11.61423277013174624547472955210, 12.44505953192757271287888041570, 14.16960218827182429796380241887, 15.80904391050943419199518934072

Graph of the $Z$-function along the critical line