L(s) = 1 | + 12i·3-s − 88i·7-s + 99·9-s + 540·11-s + 418i·13-s + 594i·17-s − 836·19-s + 1.05e3·21-s + 4.10e3i·23-s + 4.10e3i·27-s + 594·29-s + 4.25e3·31-s + 6.48e3i·33-s − 298i·37-s − 5.01e3·39-s + ⋯ |
L(s) = 1 | + 0.769i·3-s − 0.678i·7-s + 0.407·9-s + 1.34·11-s + 0.685i·13-s + 0.498i·17-s − 0.531·19-s + 0.522·21-s + 1.61i·23-s + 1.08i·27-s + 0.131·29-s + 0.795·31-s + 1.03i·33-s − 0.0357i·37-s − 0.528·39-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(100s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
100
= 22⋅52
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
16.0383 |
Root analytic conductor: |
4.00479 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ100(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 100, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
1.68475+1.04123i |
L(21) |
≈ |
1.68475+1.04123i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−12iT−243T2 |
| 7 | 1+88iT−1.68e4T2 |
| 11 | 1−540T+1.61e5T2 |
| 13 | 1−418iT−3.71e5T2 |
| 17 | 1−594iT−1.41e6T2 |
| 19 | 1+836T+2.47e6T2 |
| 23 | 1−4.10e3iT−6.43e6T2 |
| 29 | 1−594T+2.05e7T2 |
| 31 | 1−4.25e3T+2.86e7T2 |
| 37 | 1+298iT−6.93e7T2 |
| 41 | 1−1.72e4T+1.15e8T2 |
| 43 | 1−1.21e4iT−1.47e8T2 |
| 47 | 1+1.29e3iT−2.29e8T2 |
| 53 | 1+1.94e4iT−4.18e8T2 |
| 59 | 1−7.66e3T+7.14e8T2 |
| 61 | 1+3.47e4T+8.44e8T2 |
| 67 | 1−2.18e4iT−1.35e9T2 |
| 71 | 1+4.68e4T+1.80e9T2 |
| 73 | 1+6.75e4iT−2.07e9T2 |
| 79 | 1−7.69e4T+3.07e9T2 |
| 83 | 1+6.77e4iT−3.93e9T2 |
| 89 | 1+2.97e4T+5.58e9T2 |
| 97 | 1+1.22e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20815479895680098001564353237, −11.89661695338397288241979451445, −10.89708806219967913385458770068, −9.822502134501987913785763487523, −9.026152304595149776645052717057, −7.44555903297766330524587557750, −6.27092091519014015084841797241, −4.50685572201736864303206024550, −3.71666978379047021140590370427, −1.40565260639191609453305475098,
0.913882871596800214533784300681, 2.46587976791816301424791845958, 4.33341920730405106686174517848, 6.03975676589006917803936088875, 6.97346389887750239379591014397, 8.274844268100986123986863333172, 9.335093011529123433969775117690, 10.65898617984728040008810232315, 12.05755404258012186985969404174, 12.51396853960862174236686145094