Properties

Label 2-10e3-1.1-c1-0-1
Degree $2$
Conductor $1000$
Sign $1$
Analytic cond. $7.98504$
Root an. cond. $2.82578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.39·3-s − 1.13·7-s + 2.75·9-s − 2.01·11-s − 2.26·13-s + 1.08·17-s + 5.58·19-s + 2.72·21-s − 8.33·23-s + 0.591·27-s + 9.11·29-s − 8.75·31-s + 4.83·33-s + 2.54·37-s + 5.42·39-s + 9.82·41-s + 2.91·43-s + 2.09·47-s − 5.71·49-s − 2.59·51-s + 10.5·53-s − 13.3·57-s + 5.53·59-s − 1.63·61-s − 3.12·63-s + 10.5·67-s + 19.9·69-s + ⋯
L(s)  = 1  − 1.38·3-s − 0.429·7-s + 0.917·9-s − 0.608·11-s − 0.627·13-s + 0.262·17-s + 1.28·19-s + 0.594·21-s − 1.73·23-s + 0.113·27-s + 1.69·29-s − 1.57·31-s + 0.842·33-s + 0.418·37-s + 0.869·39-s + 1.53·41-s + 0.444·43-s + 0.304·47-s − 0.815·49-s − 0.364·51-s + 1.44·53-s − 1.77·57-s + 0.720·59-s − 0.209·61-s − 0.393·63-s + 1.29·67-s + 2.40·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1000\)    =    \(2^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(7.98504\)
Root analytic conductor: \(2.82578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7287179921\)
\(L(\frac12)\) \(\approx\) \(0.7287179921\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.39T + 3T^{2} \)
7 \( 1 + 1.13T + 7T^{2} \)
11 \( 1 + 2.01T + 11T^{2} \)
13 \( 1 + 2.26T + 13T^{2} \)
17 \( 1 - 1.08T + 17T^{2} \)
19 \( 1 - 5.58T + 19T^{2} \)
23 \( 1 + 8.33T + 23T^{2} \)
29 \( 1 - 9.11T + 29T^{2} \)
31 \( 1 + 8.75T + 31T^{2} \)
37 \( 1 - 2.54T + 37T^{2} \)
41 \( 1 - 9.82T + 41T^{2} \)
43 \( 1 - 2.91T + 43T^{2} \)
47 \( 1 - 2.09T + 47T^{2} \)
53 \( 1 - 10.5T + 53T^{2} \)
59 \( 1 - 5.53T + 59T^{2} \)
61 \( 1 + 1.63T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 - 12.9T + 71T^{2} \)
73 \( 1 - 13.2T + 73T^{2} \)
79 \( 1 - 6.84T + 79T^{2} \)
83 \( 1 - 2.81T + 83T^{2} \)
89 \( 1 + 15.1T + 89T^{2} \)
97 \( 1 - 18.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05405447131922687042495649100, −9.485929206143727185686810689449, −8.133786011535845071559390579758, −7.33362621496411984232201860138, −6.41942504501568628932123233917, −5.61998745621760884168344747670, −5.02543349921269280279835990871, −3.85183112850723098709754305594, −2.47559031039543173516635473788, −0.69440023213056820669337109707, 0.69440023213056820669337109707, 2.47559031039543173516635473788, 3.85183112850723098709754305594, 5.02543349921269280279835990871, 5.61998745621760884168344747670, 6.41942504501568628932123233917, 7.33362621496411984232201860138, 8.133786011535845071559390579758, 9.485929206143727185686810689449, 10.05405447131922687042495649100

Graph of the $Z$-function along the critical line