L(s) = 1 | − 2.39·3-s − 1.13·7-s + 2.75·9-s − 2.01·11-s − 2.26·13-s + 1.08·17-s + 5.58·19-s + 2.72·21-s − 8.33·23-s + 0.591·27-s + 9.11·29-s − 8.75·31-s + 4.83·33-s + 2.54·37-s + 5.42·39-s + 9.82·41-s + 2.91·43-s + 2.09·47-s − 5.71·49-s − 2.59·51-s + 10.5·53-s − 13.3·57-s + 5.53·59-s − 1.63·61-s − 3.12·63-s + 10.5·67-s + 19.9·69-s + ⋯ |
L(s) = 1 | − 1.38·3-s − 0.429·7-s + 0.917·9-s − 0.608·11-s − 0.627·13-s + 0.262·17-s + 1.28·19-s + 0.594·21-s − 1.73·23-s + 0.113·27-s + 1.69·29-s − 1.57·31-s + 0.842·33-s + 0.418·37-s + 0.869·39-s + 1.53·41-s + 0.444·43-s + 0.304·47-s − 0.815·49-s − 0.364·51-s + 1.44·53-s − 1.77·57-s + 0.720·59-s − 0.209·61-s − 0.393·63-s + 1.29·67-s + 2.40·69-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7287179921 |
L(21) |
≈ |
0.7287179921 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.39T+3T2 |
| 7 | 1+1.13T+7T2 |
| 11 | 1+2.01T+11T2 |
| 13 | 1+2.26T+13T2 |
| 17 | 1−1.08T+17T2 |
| 19 | 1−5.58T+19T2 |
| 23 | 1+8.33T+23T2 |
| 29 | 1−9.11T+29T2 |
| 31 | 1+8.75T+31T2 |
| 37 | 1−2.54T+37T2 |
| 41 | 1−9.82T+41T2 |
| 43 | 1−2.91T+43T2 |
| 47 | 1−2.09T+47T2 |
| 53 | 1−10.5T+53T2 |
| 59 | 1−5.53T+59T2 |
| 61 | 1+1.63T+61T2 |
| 67 | 1−10.5T+67T2 |
| 71 | 1−12.9T+71T2 |
| 73 | 1−13.2T+73T2 |
| 79 | 1−6.84T+79T2 |
| 83 | 1−2.81T+83T2 |
| 89 | 1+15.1T+89T2 |
| 97 | 1−18.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05405447131922687042495649100, −9.485929206143727185686810689449, −8.133786011535845071559390579758, −7.33362621496411984232201860138, −6.41942504501568628932123233917, −5.61998745621760884168344747670, −5.02543349921269280279835990871, −3.85183112850723098709754305594, −2.47559031039543173516635473788, −0.69440023213056820669337109707,
0.69440023213056820669337109707, 2.47559031039543173516635473788, 3.85183112850723098709754305594, 5.02543349921269280279835990871, 5.61998745621760884168344747670, 6.41942504501568628932123233917, 7.33362621496411984232201860138, 8.133786011535845071559390579758, 9.485929206143727185686810689449, 10.05405447131922687042495649100