L(s) = 1 | + (−0.894 + 1.09i)2-s + (0.859 + 1.03i)3-s + (−0.399 − 1.95i)4-s + (0.254 − 2.22i)5-s + (−1.90 + 0.0118i)6-s + (4.65 − 1.51i)7-s + (2.50 + 1.31i)8-s + (0.221 − 1.16i)9-s + (2.20 + 2.26i)10-s + (−0.350 + 2.77i)11-s + (1.69 − 2.09i)12-s + (−0.189 + 0.995i)13-s + (−2.50 + 6.45i)14-s + (2.52 − 1.64i)15-s + (−3.68 + 1.56i)16-s + (−1.66 − 6.48i)17-s + ⋯ |
L(s) = 1 | + (−0.632 + 0.774i)2-s + (0.496 + 0.599i)3-s + (−0.199 − 0.979i)4-s + (0.113 − 0.993i)5-s + (−0.778 + 0.00482i)6-s + (1.75 − 0.571i)7-s + (0.885 + 0.465i)8-s + (0.0738 − 0.386i)9-s + (0.697 + 0.716i)10-s + (−0.105 + 0.837i)11-s + (0.488 − 0.605i)12-s + (−0.0526 + 0.276i)13-s + (−0.670 + 1.72i)14-s + (0.652 − 0.424i)15-s + (−0.920 + 0.391i)16-s + (−0.403 − 1.57i)17-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)(0.999+0.0350i)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)(0.999+0.0350i)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
0.999+0.0350i
|
Analytic conductor: |
7.98504 |
Root analytic conductor: |
2.82578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :1/2), 0.999+0.0350i)
|
Particular Values
L(1) |
≈ |
1.60952−0.0281835i |
L(21) |
≈ |
1.60952−0.0281835i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.894−1.09i)T |
| 5 | 1+(−0.254+2.22i)T |
good | 3 | 1+(−0.859−1.03i)T+(−0.562+2.94i)T2 |
| 7 | 1+(−4.65+1.51i)T+(5.66−4.11i)T2 |
| 11 | 1+(0.350−2.77i)T+(−10.6−2.73i)T2 |
| 13 | 1+(0.189−0.995i)T+(−12.0−4.78i)T2 |
| 17 | 1+(1.66+6.48i)T+(−14.8+8.18i)T2 |
| 19 | 1+(1.29+1.06i)T+(3.56+18.6i)T2 |
| 23 | 1+(−0.102+0.109i)T+(−1.44−22.9i)T2 |
| 29 | 1+(2.65−0.166i)T+(28.7−3.63i)T2 |
| 31 | 1+(−4.75+1.22i)T+(27.1−14.9i)T2 |
| 37 | 1+(4.28+2.35i)T+(19.8+31.2i)T2 |
| 41 | 1+(−2.05+1.92i)T+(2.57−40.9i)T2 |
| 43 | 1+(−0.729+0.529i)T+(13.2−40.8i)T2 |
| 47 | 1+(−2.32−5.86i)T+(−34.2+32.1i)T2 |
| 53 | 1+(4.68−7.37i)T+(−22.5−47.9i)T2 |
| 59 | 1+(3.28−1.54i)T+(37.6−45.4i)T2 |
| 61 | 1+(−8.01+8.53i)T+(−3.83−60.8i)T2 |
| 67 | 1+(0.269−4.27i)T+(−66.4−8.39i)T2 |
| 71 | 1+(8.35−3.30i)T+(51.7−48.6i)T2 |
| 73 | 1+(0.209+0.0984i)T+(46.5+56.2i)T2 |
| 79 | 1+(−4.41−5.33i)T+(−14.8+77.6i)T2 |
| 83 | 1+(0.0671−0.0811i)T+(−15.5−81.5i)T2 |
| 89 | 1+(5.81−12.3i)T+(−56.7−68.5i)T2 |
| 97 | 1+(−11.8+0.743i)T+(96.2−12.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.586273356899496093983732912702, −9.135037464112426817099613166505, −8.368794017316765734363805640754, −7.63655284803034228316778805218, −6.88856692805358788429371526562, −5.46280108679405126917065761838, −4.59491535448105310061534860779, −4.36464534384649983046791270762, −2.13730914081516315781639352013, −0.939583917505518842557711162521,
1.61421711291225763285085646751, 2.20582553210932604048875926888, 3.26401061909585597422951562351, 4.48242389164259263914734434141, 5.72498508256833211947101499049, 6.91912520705651337953677382986, 7.983701373388142729304316246938, 8.169209487845162190156600317937, 8.897431801594798435173807243941, 10.33009640455115450966405854074