Properties

Label 2-10e3-1000.109-c1-0-100
Degree $2$
Conductor $1000$
Sign $0.999 + 0.0350i$
Analytic cond. $7.98504$
Root an. cond. $2.82578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.894 + 1.09i)2-s + (0.859 + 1.03i)3-s + (−0.399 − 1.95i)4-s + (0.254 − 2.22i)5-s + (−1.90 + 0.0118i)6-s + (4.65 − 1.51i)7-s + (2.50 + 1.31i)8-s + (0.221 − 1.16i)9-s + (2.20 + 2.26i)10-s + (−0.350 + 2.77i)11-s + (1.69 − 2.09i)12-s + (−0.189 + 0.995i)13-s + (−2.50 + 6.45i)14-s + (2.52 − 1.64i)15-s + (−3.68 + 1.56i)16-s + (−1.66 − 6.48i)17-s + ⋯
L(s)  = 1  + (−0.632 + 0.774i)2-s + (0.496 + 0.599i)3-s + (−0.199 − 0.979i)4-s + (0.113 − 0.993i)5-s + (−0.778 + 0.00482i)6-s + (1.75 − 0.571i)7-s + (0.885 + 0.465i)8-s + (0.0738 − 0.386i)9-s + (0.697 + 0.716i)10-s + (−0.105 + 0.837i)11-s + (0.488 − 0.605i)12-s + (−0.0526 + 0.276i)13-s + (−0.670 + 1.72i)14-s + (0.652 − 0.424i)15-s + (−0.920 + 0.391i)16-s + (−0.403 − 1.57i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0350i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0350i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1000\)    =    \(2^{3} \cdot 5^{3}\)
Sign: $0.999 + 0.0350i$
Analytic conductor: \(7.98504\)
Root analytic conductor: \(2.82578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1000} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1000,\ (\ :1/2),\ 0.999 + 0.0350i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.60952 - 0.0281835i\)
\(L(\frac12)\) \(\approx\) \(1.60952 - 0.0281835i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.894 - 1.09i)T \)
5 \( 1 + (-0.254 + 2.22i)T \)
good3 \( 1 + (-0.859 - 1.03i)T + (-0.562 + 2.94i)T^{2} \)
7 \( 1 + (-4.65 + 1.51i)T + (5.66 - 4.11i)T^{2} \)
11 \( 1 + (0.350 - 2.77i)T + (-10.6 - 2.73i)T^{2} \)
13 \( 1 + (0.189 - 0.995i)T + (-12.0 - 4.78i)T^{2} \)
17 \( 1 + (1.66 + 6.48i)T + (-14.8 + 8.18i)T^{2} \)
19 \( 1 + (1.29 + 1.06i)T + (3.56 + 18.6i)T^{2} \)
23 \( 1 + (-0.102 + 0.109i)T + (-1.44 - 22.9i)T^{2} \)
29 \( 1 + (2.65 - 0.166i)T + (28.7 - 3.63i)T^{2} \)
31 \( 1 + (-4.75 + 1.22i)T + (27.1 - 14.9i)T^{2} \)
37 \( 1 + (4.28 + 2.35i)T + (19.8 + 31.2i)T^{2} \)
41 \( 1 + (-2.05 + 1.92i)T + (2.57 - 40.9i)T^{2} \)
43 \( 1 + (-0.729 + 0.529i)T + (13.2 - 40.8i)T^{2} \)
47 \( 1 + (-2.32 - 5.86i)T + (-34.2 + 32.1i)T^{2} \)
53 \( 1 + (4.68 - 7.37i)T + (-22.5 - 47.9i)T^{2} \)
59 \( 1 + (3.28 - 1.54i)T + (37.6 - 45.4i)T^{2} \)
61 \( 1 + (-8.01 + 8.53i)T + (-3.83 - 60.8i)T^{2} \)
67 \( 1 + (0.269 - 4.27i)T + (-66.4 - 8.39i)T^{2} \)
71 \( 1 + (8.35 - 3.30i)T + (51.7 - 48.6i)T^{2} \)
73 \( 1 + (0.209 + 0.0984i)T + (46.5 + 56.2i)T^{2} \)
79 \( 1 + (-4.41 - 5.33i)T + (-14.8 + 77.6i)T^{2} \)
83 \( 1 + (0.0671 - 0.0811i)T + (-15.5 - 81.5i)T^{2} \)
89 \( 1 + (5.81 - 12.3i)T + (-56.7 - 68.5i)T^{2} \)
97 \( 1 + (-11.8 + 0.743i)T + (96.2 - 12.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.586273356899496093983732912702, −9.135037464112426817099613166505, −8.368794017316765734363805640754, −7.63655284803034228316778805218, −6.88856692805358788429371526562, −5.46280108679405126917065761838, −4.59491535448105310061534860779, −4.36464534384649983046791270762, −2.13730914081516315781639352013, −0.939583917505518842557711162521, 1.61421711291225763285085646751, 2.20582553210932604048875926888, 3.26401061909585597422951562351, 4.48242389164259263914734434141, 5.72498508256833211947101499049, 6.91912520705651337953677382986, 7.983701373388142729304316246938, 8.169209487845162190156600317937, 8.897431801594798435173807243941, 10.33009640455115450966405854074

Graph of the $Z$-function along the critical line