Properties

Label 2-10e3-8.5-c1-0-60
Degree 22
Conductor 10001000
Sign 0.231+0.972i0.231 + 0.972i
Analytic cond. 7.985047.98504
Root an. cond. 2.825782.82578
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.800 − 1.16i)2-s + 2.62i·3-s + (−0.719 + 1.86i)4-s + (3.06 − 2.10i)6-s − 0.269·7-s + (2.75 − 0.654i)8-s − 3.89·9-s − 4.58i·11-s + (−4.90 − 1.88i)12-s − 1.55i·13-s + (0.215 + 0.313i)14-s + (−2.96 − 2.68i)16-s − 0.609·17-s + (3.12 + 4.54i)18-s − 6.69i·19-s + ⋯
L(s)  = 1  + (−0.565 − 0.824i)2-s + 1.51i·3-s + (−0.359 + 0.933i)4-s + (1.25 − 0.858i)6-s − 0.101·7-s + (0.972 − 0.231i)8-s − 1.29·9-s − 1.38i·11-s + (−1.41 − 0.545i)12-s − 0.430i·13-s + (0.0575 + 0.0839i)14-s + (−0.741 − 0.671i)16-s − 0.147·17-s + (0.735 + 1.07i)18-s − 1.53i·19-s + ⋯

Functional equation

Λ(s)=(1000s/2ΓC(s)L(s)=((0.231+0.972i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.231 + 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1000s/2ΓC(s+1/2)L(s)=((0.231+0.972i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.231 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 10001000    =    23532^{3} \cdot 5^{3}
Sign: 0.231+0.972i0.231 + 0.972i
Analytic conductor: 7.985047.98504
Root analytic conductor: 2.825782.82578
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1000(501,)\chi_{1000} (501, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1000, ( :1/2), 0.231+0.972i)(2,\ 1000,\ (\ :1/2),\ 0.231 + 0.972i)

Particular Values

L(1)L(1) \approx 0.5975560.472123i0.597556 - 0.472123i
L(12)L(\frac12) \approx 0.5975560.472123i0.597556 - 0.472123i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.800+1.16i)T 1 + (0.800 + 1.16i)T
5 1 1
good3 12.62iT3T2 1 - 2.62iT - 3T^{2}
7 1+0.269T+7T2 1 + 0.269T + 7T^{2}
11 1+4.58iT11T2 1 + 4.58iT - 11T^{2}
13 1+1.55iT13T2 1 + 1.55iT - 13T^{2}
17 1+0.609T+17T2 1 + 0.609T + 17T^{2}
19 1+6.69iT19T2 1 + 6.69iT - 19T^{2}
23 1+3.52T+23T2 1 + 3.52T + 23T^{2}
29 1+7.73iT29T2 1 + 7.73iT - 29T^{2}
31 1+3.34T+31T2 1 + 3.34T + 31T^{2}
37 1+5.32iT37T2 1 + 5.32iT - 37T^{2}
41 14.38T+41T2 1 - 4.38T + 41T^{2}
43 112.2iT43T2 1 - 12.2iT - 43T^{2}
47 19.54T+47T2 1 - 9.54T + 47T^{2}
53 1+10.6iT53T2 1 + 10.6iT - 53T^{2}
59 110.2iT59T2 1 - 10.2iT - 59T^{2}
61 1+13.2iT61T2 1 + 13.2iT - 61T^{2}
67 1+3.93iT67T2 1 + 3.93iT - 67T^{2}
71 16.95T+71T2 1 - 6.95T + 71T^{2}
73 1+5.93T+73T2 1 + 5.93T + 73T^{2}
79 110.1T+79T2 1 - 10.1T + 79T^{2}
83 1+6.52iT83T2 1 + 6.52iT - 83T^{2}
89 16.69T+89T2 1 - 6.69T + 89T^{2}
97 13.99T+97T2 1 - 3.99T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.713221490170034665272327132948, −9.282034029983826003205618189377, −8.502921191288745479663416344050, −7.69556145356589666874966450644, −6.23789004048709129090366807212, −5.14417773083131138162404264736, −4.21893680979658266133672881122, −3.44031351647366409487204547096, −2.55132238845248669318751086039, −0.44203805577804098941225018369, 1.38461769662668654586874447687, 2.14636449955759814691807966042, 4.09062616720741030860980087805, 5.35172069930406926219673254331, 6.21604334041925689043479902887, 7.00281388768813495319184234983, 7.46856272630132693554146740940, 8.222867691749538731442877689510, 9.100074632878273339320733231916, 9.988506618297499728636860021126

Graph of the ZZ-function along the critical line