L(s) = 1 | + (1.98 − 2.72i)3-s − 0.794i·7-s + (−2.58 − 7.94i)9-s + (0.673 − 2.07i)11-s + (2.73 − 0.888i)13-s + (−0.0736 − 0.101i)17-s + (−5.66 + 4.11i)19-s + (−2.16 − 1.57i)21-s + (5.38 + 1.74i)23-s + (−17.1 − 5.57i)27-s + (0.989 + 0.718i)29-s + (−5.53 + 4.01i)31-s + (−4.31 − 5.94i)33-s + (6.55 − 2.12i)37-s + (2.99 − 9.21i)39-s + ⋯ |
L(s) = 1 | + (1.14 − 1.57i)3-s − 0.300i·7-s + (−0.860 − 2.64i)9-s + (0.203 − 0.624i)11-s + (0.758 − 0.246i)13-s + (−0.0178 − 0.0245i)17-s + (−1.29 + 0.943i)19-s + (−0.472 − 0.343i)21-s + (1.12 + 0.364i)23-s + (−3.30 − 1.07i)27-s + (0.183 + 0.133i)29-s + (−0.993 + 0.721i)31-s + (−0.751 − 1.03i)33-s + (1.07 − 0.350i)37-s + (0.479 − 1.47i)39-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)(−0.628+0.777i)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)(−0.628+0.777i)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
−0.628+0.777i
|
Analytic conductor: |
7.98504 |
Root analytic conductor: |
2.82578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :1/2), −0.628+0.777i)
|
Particular Values
L(1) |
≈ |
0.970304−2.03260i |
L(21) |
≈ |
0.970304−2.03260i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−1.98+2.72i)T+(−0.927−2.85i)T2 |
| 7 | 1+0.794iT−7T2 |
| 11 | 1+(−0.673+2.07i)T+(−8.89−6.46i)T2 |
| 13 | 1+(−2.73+0.888i)T+(10.5−7.64i)T2 |
| 17 | 1+(0.0736+0.101i)T+(−5.25+16.1i)T2 |
| 19 | 1+(5.66−4.11i)T+(5.87−18.0i)T2 |
| 23 | 1+(−5.38−1.74i)T+(18.6+13.5i)T2 |
| 29 | 1+(−0.989−0.718i)T+(8.96+27.5i)T2 |
| 31 | 1+(5.53−4.01i)T+(9.57−29.4i)T2 |
| 37 | 1+(−6.55+2.12i)T+(29.9−21.7i)T2 |
| 41 | 1+(−0.244−0.753i)T+(−33.1+24.0i)T2 |
| 43 | 1+6.69iT−43T2 |
| 47 | 1+(1.79−2.46i)T+(−14.5−44.6i)T2 |
| 53 | 1+(−0.536+0.738i)T+(−16.3−50.4i)T2 |
| 59 | 1+(−0.853−2.62i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−3.22+9.92i)T+(−49.3−35.8i)T2 |
| 67 | 1+(−2.90−3.99i)T+(−20.7+63.7i)T2 |
| 71 | 1+(6.39+4.64i)T+(21.9+67.5i)T2 |
| 73 | 1+(3.01+0.980i)T+(59.0+42.9i)T2 |
| 79 | 1+(−1.78−1.29i)T+(24.4+75.1i)T2 |
| 83 | 1+(−0.280−0.385i)T+(−25.6+78.9i)T2 |
| 89 | 1+(4.61−14.2i)T+(−72.0−52.3i)T2 |
| 97 | 1+(−5.06+6.97i)T+(−29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.262482663483781438846877059381, −8.662606087830128379651997720355, −8.060223393021155012837582519229, −7.22657489364056970653449198944, −6.49525904130617708140136815217, −5.71964732655714333096403700504, −3.90477571876458279540926014913, −3.16056885635640287419348540109, −1.98607454804731189775819142244, −0.932657599038048472474150248139,
2.16373691864068546523066903074, 3.05325462393104379251824679035, 4.18298905347806903505279946108, 4.62649369372463264886361141964, 5.77652475044411611596766203036, 7.03943212827518439710998206203, 8.151910946723141702748591509564, 8.858287592140459419388498602940, 9.287440349047988971501157610534, 10.13693437938864532862904731015