L(s) = 1 | + (1.98 − 2.72i)3-s − 0.794i·7-s + (−2.58 − 7.94i)9-s + (0.673 − 2.07i)11-s + (2.73 − 0.888i)13-s + (−0.0736 − 0.101i)17-s + (−5.66 + 4.11i)19-s + (−2.16 − 1.57i)21-s + (5.38 + 1.74i)23-s + (−17.1 − 5.57i)27-s + (0.989 + 0.718i)29-s + (−5.53 + 4.01i)31-s + (−4.31 − 5.94i)33-s + (6.55 − 2.12i)37-s + (2.99 − 9.21i)39-s + ⋯ |
L(s) = 1 | + (1.14 − 1.57i)3-s − 0.300i·7-s + (−0.860 − 2.64i)9-s + (0.203 − 0.624i)11-s + (0.758 − 0.246i)13-s + (−0.0178 − 0.0245i)17-s + (−1.29 + 0.943i)19-s + (−0.472 − 0.343i)21-s + (1.12 + 0.364i)23-s + (−3.30 − 1.07i)27-s + (0.183 + 0.133i)29-s + (−0.993 + 0.721i)31-s + (−0.751 − 1.03i)33-s + (1.07 − 0.350i)37-s + (0.479 − 1.47i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.628 + 0.777i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.628 + 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.970304 - 2.03260i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.970304 - 2.03260i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1.98 + 2.72i)T + (-0.927 - 2.85i)T^{2} \) |
| 7 | \( 1 + 0.794iT - 7T^{2} \) |
| 11 | \( 1 + (-0.673 + 2.07i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-2.73 + 0.888i)T + (10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.0736 + 0.101i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (5.66 - 4.11i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-5.38 - 1.74i)T + (18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (-0.989 - 0.718i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (5.53 - 4.01i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-6.55 + 2.12i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.244 - 0.753i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 6.69iT - 43T^{2} \) |
| 47 | \( 1 + (1.79 - 2.46i)T + (-14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.536 + 0.738i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.853 - 2.62i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.22 + 9.92i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (-2.90 - 3.99i)T + (-20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (6.39 + 4.64i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.01 + 0.980i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.78 - 1.29i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.280 - 0.385i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (4.61 - 14.2i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (-5.06 + 6.97i)T + (-29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.262482663483781438846877059381, −8.662606087830128379651997720355, −8.060223393021155012837582519229, −7.22657489364056970653449198944, −6.49525904130617708140136815217, −5.71964732655714333096403700504, −3.90477571876458279540926014913, −3.16056885635640287419348540109, −1.98607454804731189775819142244, −0.932657599038048472474150248139,
2.16373691864068546523066903074, 3.05325462393104379251824679035, 4.18298905347806903505279946108, 4.62649369372463264886361141964, 5.77652475044411611596766203036, 7.03943212827518439710998206203, 8.151910946723141702748591509564, 8.858287592140459419388498602940, 9.287440349047988971501157610534, 10.13693437938864532862904731015