L(s) = 1 | + (−1.76 − 2.42i)3-s + 4.21i·7-s + (−1.84 + 5.68i)9-s + (−0.910 − 2.80i)11-s + (3.05 + 0.992i)13-s + (2.94 − 4.05i)17-s + (−3.38 − 2.45i)19-s + (10.2 − 7.42i)21-s + (2.02 − 0.658i)23-s + (8.48 − 2.75i)27-s + (5.74 − 4.17i)29-s + (0.918 + 0.667i)31-s + (−5.19 + 7.14i)33-s + (1.94 + 0.630i)37-s + (−2.97 − 9.15i)39-s + ⋯ |
L(s) = 1 | + (−1.01 − 1.39i)3-s + 1.59i·7-s + (−0.615 + 1.89i)9-s + (−0.274 − 0.845i)11-s + (0.847 + 0.275i)13-s + (0.715 − 0.984i)17-s + (−0.775 − 0.563i)19-s + (2.22 − 1.61i)21-s + (0.422 − 0.137i)23-s + (1.63 − 0.530i)27-s + (1.06 − 0.775i)29-s + (0.165 + 0.119i)31-s + (−0.903 + 1.24i)33-s + (0.319 + 0.103i)37-s + (−0.476 − 1.46i)39-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)(−0.119+0.992i)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)(−0.119+0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
−0.119+0.992i
|
Analytic conductor: |
7.98504 |
Root analytic conductor: |
2.82578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(849,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :1/2), −0.119+0.992i)
|
Particular Values
L(1) |
≈ |
0.653625−0.736727i |
L(21) |
≈ |
0.653625−0.736727i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1.76+2.42i)T+(−0.927+2.85i)T2 |
| 7 | 1−4.21iT−7T2 |
| 11 | 1+(0.910+2.80i)T+(−8.89+6.46i)T2 |
| 13 | 1+(−3.05−0.992i)T+(10.5+7.64i)T2 |
| 17 | 1+(−2.94+4.05i)T+(−5.25−16.1i)T2 |
| 19 | 1+(3.38+2.45i)T+(5.87+18.0i)T2 |
| 23 | 1+(−2.02+0.658i)T+(18.6−13.5i)T2 |
| 29 | 1+(−5.74+4.17i)T+(8.96−27.5i)T2 |
| 31 | 1+(−0.918−0.667i)T+(9.57+29.4i)T2 |
| 37 | 1+(−1.94−0.630i)T+(29.9+21.7i)T2 |
| 41 | 1+(0.323−0.996i)T+(−33.1−24.0i)T2 |
| 43 | 1+3.45iT−43T2 |
| 47 | 1+(3.94+5.42i)T+(−14.5+44.6i)T2 |
| 53 | 1+(1.86+2.56i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−2.87+8.85i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−0.556−1.71i)T+(−49.3+35.8i)T2 |
| 67 | 1+(−4.79+6.59i)T+(−20.7−63.7i)T2 |
| 71 | 1+(−7.16+5.20i)T+(21.9−67.5i)T2 |
| 73 | 1+(1.00−0.327i)T+(59.0−42.9i)T2 |
| 79 | 1+(6.21−4.51i)T+(24.4−75.1i)T2 |
| 83 | 1+(6.11−8.42i)T+(−25.6−78.9i)T2 |
| 89 | 1+(−1.68−5.18i)T+(−72.0+52.3i)T2 |
| 97 | 1+(9.97+13.7i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.727405503884059727081664388367, −8.557402779782587096305316553727, −8.221318321813945367338547262120, −6.97183778129332800511215601875, −6.28236511250522992479402766445, −5.66958875824618303275071744905, −4.92224216039856574654021676013, −3.00379003283801769505904423689, −2.03763451820847766597908120056, −0.62823669949900980924825693629,
1.12232292002471409347888857408, 3.40471948271598021398776664271, 4.15244847715101443368013386265, 4.75410473325003961959095547543, 5.83523077244001221684329259340, 6.60717740289816626607452249335, 7.66119467798209860787249853409, 8.658518767308475384137107126045, 9.863434139315543672783154506677, 10.29166170412923682958443324334