L(s) = 1 | + (−0.919 − 1.26i)3-s − 0.0338i·7-s + (0.170 − 0.523i)9-s + (1.79 + 5.51i)11-s + (2.96 + 0.964i)13-s + (−2.40 + 3.30i)17-s + (−0.00789 − 0.00573i)19-s + (−0.0429 + 0.0311i)21-s + (−2.20 + 0.717i)23-s + (−5.28 + 1.71i)27-s + (4.38 − 3.18i)29-s + (3.80 + 2.76i)31-s + (5.33 − 7.33i)33-s + (10.1 + 3.29i)37-s + (−1.50 − 4.64i)39-s + ⋯ |
L(s) = 1 | + (−0.531 − 0.731i)3-s − 0.0128i·7-s + (0.0566 − 0.174i)9-s + (0.540 + 1.66i)11-s + (0.822 + 0.267i)13-s + (−0.583 + 0.802i)17-s + (−0.00181 − 0.00131i)19-s + (−0.00936 + 0.00680i)21-s + (−0.460 + 0.149i)23-s + (−1.01 + 0.330i)27-s + (0.814 − 0.592i)29-s + (0.682 + 0.495i)31-s + (0.928 − 1.27i)33-s + (1.66 + 0.541i)37-s + (−0.241 − 0.743i)39-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)(0.999−0.0361i)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)(0.999−0.0361i)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
0.999−0.0361i
|
Analytic conductor: |
7.98504 |
Root analytic conductor: |
2.82578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(849,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :1/2), 0.999−0.0361i)
|
Particular Values
L(1) |
≈ |
1.36110+0.0246241i |
L(21) |
≈ |
1.36110+0.0246241i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(0.919+1.26i)T+(−0.927+2.85i)T2 |
| 7 | 1+0.0338iT−7T2 |
| 11 | 1+(−1.79−5.51i)T+(−8.89+6.46i)T2 |
| 13 | 1+(−2.96−0.964i)T+(10.5+7.64i)T2 |
| 17 | 1+(2.40−3.30i)T+(−5.25−16.1i)T2 |
| 19 | 1+(0.00789+0.00573i)T+(5.87+18.0i)T2 |
| 23 | 1+(2.20−0.717i)T+(18.6−13.5i)T2 |
| 29 | 1+(−4.38+3.18i)T+(8.96−27.5i)T2 |
| 31 | 1+(−3.80−2.76i)T+(9.57+29.4i)T2 |
| 37 | 1+(−10.1−3.29i)T+(29.9+21.7i)T2 |
| 41 | 1+(−1.81+5.59i)T+(−33.1−24.0i)T2 |
| 43 | 1−0.480iT−43T2 |
| 47 | 1+(−6.66−9.17i)T+(−14.5+44.6i)T2 |
| 53 | 1+(4.10+5.64i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−2.19+6.74i)T+(−47.7−34.6i)T2 |
| 61 | 1+(1.64+5.05i)T+(−49.3+35.8i)T2 |
| 67 | 1+(−1.71+2.36i)T+(−20.7−63.7i)T2 |
| 71 | 1+(12.6−9.22i)T+(21.9−67.5i)T2 |
| 73 | 1+(−6.82+2.21i)T+(59.0−42.9i)T2 |
| 79 | 1+(0.289−0.210i)T+(24.4−75.1i)T2 |
| 83 | 1+(−1.89+2.60i)T+(−25.6−78.9i)T2 |
| 89 | 1+(−4.71−14.4i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−1.26−1.73i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.928266303432955045318269467045, −9.239745651337504503510905409547, −8.200874401688618982482102254632, −7.30804322959872063485659827196, −6.50435133557321436677401952622, −6.04360866129777074212599477042, −4.62087345130988271234856478964, −3.89672514993249295812856842657, −2.22110024394467391962757095456, −1.17196216468015958415060738413,
0.827359178766010126476775846800, 2.70049306824499353206503091239, 3.84521141686350077366486163391, 4.65449441578218338984636778377, 5.78714416618962721228638407258, 6.21980649651919555737487062120, 7.50723949178697147582692490913, 8.499927799963496989712965944462, 9.103630164345836286948954086177, 10.12955056745516294908273055092