L(s) = 1 | + (−0.919 − 1.26i)3-s − 0.0338i·7-s + (0.170 − 0.523i)9-s + (1.79 + 5.51i)11-s + (2.96 + 0.964i)13-s + (−2.40 + 3.30i)17-s + (−0.00789 − 0.00573i)19-s + (−0.0429 + 0.0311i)21-s + (−2.20 + 0.717i)23-s + (−5.28 + 1.71i)27-s + (4.38 − 3.18i)29-s + (3.80 + 2.76i)31-s + (5.33 − 7.33i)33-s + (10.1 + 3.29i)37-s + (−1.50 − 4.64i)39-s + ⋯ |
L(s) = 1 | + (−0.531 − 0.731i)3-s − 0.0128i·7-s + (0.0566 − 0.174i)9-s + (0.540 + 1.66i)11-s + (0.822 + 0.267i)13-s + (−0.583 + 0.802i)17-s + (−0.00181 − 0.00131i)19-s + (−0.00936 + 0.00680i)21-s + (−0.460 + 0.149i)23-s + (−1.01 + 0.330i)27-s + (0.814 − 0.592i)29-s + (0.682 + 0.495i)31-s + (0.928 − 1.27i)33-s + (1.66 + 0.541i)37-s + (−0.241 − 0.743i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36110 + 0.0246241i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36110 + 0.0246241i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.919 + 1.26i)T + (-0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + 0.0338iT - 7T^{2} \) |
| 11 | \( 1 + (-1.79 - 5.51i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-2.96 - 0.964i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (2.40 - 3.30i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.00789 + 0.00573i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (2.20 - 0.717i)T + (18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-4.38 + 3.18i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-3.80 - 2.76i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-10.1 - 3.29i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.81 + 5.59i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 0.480iT - 43T^{2} \) |
| 47 | \( 1 + (-6.66 - 9.17i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (4.10 + 5.64i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.19 + 6.74i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (1.64 + 5.05i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-1.71 + 2.36i)T + (-20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (12.6 - 9.22i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-6.82 + 2.21i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (0.289 - 0.210i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.89 + 2.60i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-4.71 - 14.4i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-1.26 - 1.73i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.928266303432955045318269467045, −9.239745651337504503510905409547, −8.200874401688618982482102254632, −7.30804322959872063485659827196, −6.50435133557321436677401952622, −6.04360866129777074212599477042, −4.62087345130988271234856478964, −3.89672514993249295812856842657, −2.22110024394467391962757095456, −1.17196216468015958415060738413,
0.827359178766010126476775846800, 2.70049306824499353206503091239, 3.84521141686350077366486163391, 4.65449441578218338984636778377, 5.78714416618962721228638407258, 6.21980649651919555737487062120, 7.50723949178697147582692490913, 8.499927799963496989712965944462, 9.103630164345836286948954086177, 10.12955056745516294908273055092