L(s) = 1 | + (1.65 + 0.523i)3-s + (−0.841 − 1.45i)5-s + (−1.65 − 2.06i)7-s + (2.45 + 1.72i)9-s + (0.622 − 1.07i)11-s + (1.96 − 3.39i)13-s + (−0.626 − 2.84i)15-s + (−1.62 − 2.81i)17-s + (−2.36 + 4.09i)19-s + (−1.65 − 4.27i)21-s + (−0.199 − 0.344i)23-s + (1.08 − 1.87i)25-s + (3.14 + 4.13i)27-s + (−3.19 − 5.54i)29-s + 0.578·31-s + ⋯ |
L(s) = 1 | + (0.953 + 0.302i)3-s + (−0.376 − 0.651i)5-s + (−0.625 − 0.780i)7-s + (0.817 + 0.576i)9-s + (0.187 − 0.325i)11-s + (0.543 − 0.941i)13-s + (−0.161 − 0.735i)15-s + (−0.394 − 0.683i)17-s + (−0.541 + 0.938i)19-s + (−0.360 − 0.932i)21-s + (−0.0415 − 0.0718i)23-s + (0.216 − 0.375i)25-s + (0.604 + 0.796i)27-s + (−0.594 − 1.02i)29-s + 0.103·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.294 + 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.294 + 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.819168600\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.819168600\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.65 - 0.523i)T \) |
| 7 | \( 1 + (1.65 + 2.06i)T \) |
good | 5 | \( 1 + (0.841 + 1.45i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.622 + 1.07i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.96 + 3.39i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.62 + 2.81i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.36 - 4.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.199 + 0.344i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.19 + 5.54i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.578T + 31T^{2} \) |
| 37 | \( 1 + (-2.72 + 4.71i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.20 + 7.27i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.46 + 4.26i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 0.425T + 47T^{2} \) |
| 53 | \( 1 + (0.466 + 0.807i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 6.05T + 59T^{2} \) |
| 61 | \( 1 - 10.2T + 61T^{2} \) |
| 67 | \( 1 - 9.41T + 67T^{2} \) |
| 71 | \( 1 + 8.46T + 71T^{2} \) |
| 73 | \( 1 + (-6.82 - 11.8i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 5.53T + 79T^{2} \) |
| 83 | \( 1 + (-8.03 - 13.9i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.03 - 10.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.86 + 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.740902613154469337156284394711, −8.914269941538164361099730955157, −8.183345473213814923090382406114, −7.55087930098286333910318775843, −6.50242785489621386845902393844, −5.35284194845050011067065628181, −4.10660791421427195389284238942, −3.70258499917188875707760265364, −2.43276302136549163859671483709, −0.75508256751896699185577131204,
1.75401866983436407903183279035, 2.82466862415444116067458929697, 3.64159604929253198430355184744, 4.67177886367156031860706751673, 6.29713443057348450164217093368, 6.70596029091311366504029906405, 7.61733036382599719782757000518, 8.658095905773061853296731383744, 9.116146796148702541377311418105, 9.918319363017319730932483752496