L(s) = 1 | + (−1.12 − 1.31i)3-s + (−0.927 − 1.60i)5-s + (−0.900 + 2.48i)7-s + (−0.467 + 2.96i)9-s + (−1.28 + 2.23i)11-s + (2.82 − 4.88i)13-s + (−1.07 + 3.03i)15-s + (3.57 + 6.19i)17-s + (−0.636 + 1.10i)19-s + (4.28 − 1.61i)21-s + (0.120 + 0.208i)23-s + (0.777 − 1.34i)25-s + (4.42 − 2.71i)27-s + (0.923 + 1.59i)29-s + 2.99·31-s + ⋯ |
L(s) = 1 | + (−0.649 − 0.760i)3-s + (−0.414 − 0.718i)5-s + (−0.340 + 0.940i)7-s + (−0.155 + 0.987i)9-s + (−0.388 + 0.672i)11-s + (0.782 − 1.35i)13-s + (−0.276 + 0.782i)15-s + (0.868 + 1.50i)17-s + (−0.146 + 0.252i)19-s + (0.935 − 0.352i)21-s + (0.0251 + 0.0435i)23-s + (0.155 − 0.269i)25-s + (0.852 − 0.523i)27-s + (0.171 + 0.297i)29-s + 0.537·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.072732764\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.072732764\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.12 + 1.31i)T \) |
| 7 | \( 1 + (0.900 - 2.48i)T \) |
good | 5 | \( 1 + (0.927 + 1.60i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.28 - 2.23i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.82 + 4.88i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.57 - 6.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.636 - 1.10i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.120 - 0.208i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.923 - 1.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.99T + 31T^{2} \) |
| 37 | \( 1 + (-0.338 + 0.585i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.733 - 1.27i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.14 + 7.17i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12.3T + 47T^{2} \) |
| 53 | \( 1 + (-3.35 - 5.81i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 2.08T + 59T^{2} \) |
| 61 | \( 1 - 12.9T + 61T^{2} \) |
| 67 | \( 1 - 4.83T + 67T^{2} \) |
| 71 | \( 1 - 1.53T + 71T^{2} \) |
| 73 | \( 1 + (6.55 + 11.3i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 3.72T + 79T^{2} \) |
| 83 | \( 1 + (-3.00 - 5.19i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.60 + 11.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.40 - 11.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23070812237892164639764897211, −8.788919534544587309139373230099, −8.236338197105008065509163206762, −7.57146109022385378779603514328, −6.32144662689006173621269742320, −5.69422413997251172668490863086, −4.97341887483639272168638670029, −3.62407396109202787745775841484, −2.27214822539353163513701939871, −0.934849982196174165786965915114,
0.75806167273809316065007213949, 2.98088058270800704184233906465, 3.76774369150015926409338146360, 4.62110420260357015130031112208, 5.71111645069640655938642506160, 6.71839190780547668043738630972, 7.18435727380486293873498017040, 8.413018492406314468682201770666, 9.430208859531889475971648029384, 10.05456265511147264236107887122